Skip to main content

Role of Taurine in Thermoregulation and Motor Control

Behavioural and Cellular Studies

  • Chapter
Taurine 2

Abstract

Despite extensive studies on the synthesis and possible neuronal or extraneuronal uptake and release of taurine, there is still no consensus about its functions23, 24, 35. It has variously been designated as a neurotransmitter, neuromodulator, a modulator of Ca2+ fluxes, an osmoregulator or membrane stabilizer and an antioxidant (Figure 1). These effects may, at least in some cases, be interlinked. Thus, for example, the neuroprotective effects of taurine may be related to its osmoregulatory, antioxidant and Ca2+-modulating functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albin, R.L., Young, A.B. and Penney, J.B., 1989. The functional anatomy of basal ganglia disorders. Trend Neuroscl., 12:366–375.

    Article  CAS  Google Scholar 

  2. Bianchi, L., Sharp, T., Bolam, J.P. and Delia Corte, L., 1994, The effect of kainic acid on the release of GABA in rat neostriatum and substantia nigra. Neuroreport, 5:1233–1236.

    Article  CAS  Google Scholar 

  3. Bolam, J.R and Smith, A.D., 1992. The striatum and the globus pallidus send convergent synaptic inputs onto single cells in the entopeduncular nucleus of the rat: a double anterograde labeling study combined with post-embedding immunocytochemistry for GABA. J. Comp. Neurol., 321:456–476.

    Article  CAS  Google Scholar 

  4. Bureau, M.H. and Olsen, R.W., 1991. Taurine acts on a subclass of GABAA receptors in mammalian brain in vitro. Eur. J. Pharmacol., 207:9–16.

    Article  CAS  Google Scholar 

  5. Campistron, G., Geffard, M. and Buijs, R.M., 1986. Immunological approach to the detection of taurine and immunocytochemical results. J. Neurochem., 46:862–868.

    Article  CAS  Google Scholar 

  6. Carlà, V., Dacke, C.G., Davidson, N., Giotti, A., Magnani, M., and Sgaragli, G.P., 1982. Taurine and thermoregulation: behavioral and cellular studies, in: “Taurine in Nutrition and Neurology”. R.J. Huxtable, H. Pasantes-Morales, eds, Plenum Publ. Corp., New York, pp 361–372.

    Chapter  Google Scholar 

  7. Chan-Palay, V., Palay, S.L. and Wu, J.-Y., 1982. Sagittal cerebellar microbands of taurine neurons: immunocytochemical demonstration by using antibodies against the taurine synthesizing enzyme cysteine sulphinic acid decarboxylase. Proc. Natl. Acad. Sci. USA, 79:4221–4225.

    Article  CAS  Google Scholar 

  8. Chevalier, G. and Deniau, J.M., 1990. Disinhibition as a basic process in the expression of striatal function. Trend Neurosci., 13:277–281.

    Article  CAS  Google Scholar 

  9. Clarke, D.J., Smith, A.D., and Bolam, J.P., 1983. Uptake of [3H]taurine into medium-size neurons and into identified stratonigral neurons in the rat neostriatum. Brain Res., 289:342–348.

    Article  CAS  Google Scholar 

  10. Clarke, H.T., Gillespe, H.B., and Weisshaus, S.Z., 1933. The action of formaldehyde on amines and amino acids. J. Am.Chem.Soc, 55:4571–4587.

    Article  CAS  Google Scholar 

  11. Collins, G.G.S., 1974. The rates of synthesis, uptake and disappearance of [14C]taurine in eight areas of the rat central nervous system. Brain Res., 76:447–459.

    Article  CAS  Google Scholar 

  12. Cooper, J.R., Bloom, F.E., and Roth, R.H., 1991. Identification of synaptic transmitters, in, “The Biochemical Basis of Neuropharmacology”, pp. 39–43, Oxford University Press, New York, Oxford.

    Google Scholar 

  13. De Long, M.R., Wichmann, T., 1993. Basal ganglia-thalamocortical circuits in parkinsonian signs. Clin.Neurosci., 1:18–26.

    Google Scholar 

  14. Decavel, C., and Hatton, G.I., 1995. Taurine immunoreactivity in the rat supraoptic nucleus: prominent localization in glial cells. J. Comp. Neurology, 354:13–26.

    Article  CAS  Google Scholar 

  15. Delia Corte, L., Bianchi, L., Federico, S., and Michelassi, S., 1991. In vivo HPLC estimation of extracellular aspartate, glutamate, taurine and GABA in rat striatum. Eur.J.Neurosci. suppl.4, p 151.

    Google Scholar 

  16. Delia Corte, L., Bolam, J.P., and Smith, A.D., 1987. Uptake, localization and release of taurine in the rat basal ganglia, In: “The Biology of Taurine”, R.J. Huxtable, F. Franconi and A. Giotti, eds, pp. 285–294, Plenum Publ. Corp., New York.

    Chapter  Google Scholar 

  17. Delia Corte, L., Bolam, J.P., Clarke, D.J., Parry, D.H., and Smith, A.D., 1990. Sites of [3H]taurine uptake in the rat substantia nigra in relation to the release of taurine from the striatonigral pathway. Eur. J. Neurosci., 2:50–61.

    Article  Google Scholar 

  18. Dray, A., and Straughan, D.W., 1976. Synaptic mechanisms in the substantia nigra. J. Pharm. Pharmacol., 28:400–405.

    Article  CAS  Google Scholar 

  19. Freifelder, M., Howard, B., and Wright, H.B., 1964. Hypocholesteremic agents. II. The hydrogenation of some pyridine sulfonic acids. J. Med. Chem., 7:664–665.

    Article  CAS  Google Scholar 

  20. Geoghegan, K.F., and Dixon, H.B.F., 1989. Synthesis of 2-aminoethylarsonic acid: A new synthesis of amines from haloalkanes. Biochem. J., 260:295–296.

    CAS  Google Scholar 

  21. Hanretta, A.T., and Lombardini, J.B., 1985. Effects of intrahypothalamic kainic acid injection on taurine levels, binding and uptake. Brain Res., 338:351–354.

    Article  CAS  Google Scholar 

  22. Häusser, M.A., Yung, W.H., and Lacey, M.G., 1992. Taurine and glycine activate the same Cl- conductance in substantia nigra dopamine neurons. Brain Res., 571:103–108.

    Article  Google Scholar 

  23. Huxtable, R.J., 1989. Taurine in the central nervous system and the mammalian actions of taurine. Prog. Neurobiol., 32:471–533.

    Article  CAS  Google Scholar 

  24. Huxtable, R.J., 1992. Physiological actions of taurine. Physiol. Rev., 72:101–159.

    CAS  Google Scholar 

  25. Ida, S., Kuriyama, K., Tomida, Y., and Kimura, H., 1987. Antisera against taurine: quantitative characterization of the antibody specificity and its application to immunohistochemical study in the rat brain. J. Neurosci. Res., 18:626–631.

    Article  CAS  Google Scholar 

  26. Kaakkola, S., and Kaariainen, T., 1980. Contralateral circling behaviour induced by intranigral injection of taurine in rats. Acta Pharmacol. Toxicol., 46:293–298.

    Article  CAS  Google Scholar 

  27. Kamata, K., Kameyana, T., Okuyama, S., Hashimoto, S., and Aihara, H., 1985. Contralateral circling behaviour induced by intranigral microinjections of taurine and GABA in rats. Brain Res., 343:275–282.

    Article  CAS  Google Scholar 

  28. Kluger, R., Nakaoka, K., and Tsui, W.C., 1978. Substrate analogue studies of the specificity and catalytic mechanism of D-3-hydroxybutyrate dehydrogenase. J. Am. Chem. Soc., 100:7388–7392.

    Article  CAS  Google Scholar 

  29. Korf, J., and Venema, K., 1983. Aminoacids in the substantia nigra of rats with striatal lesions produced by kainic acid. J. Neurochem., 40:1171–1173.

    Article  CAS  Google Scholar 

  30. Legay, F., Lecestre, D., and Tappaz, M., 1987. Taurine biosynthesis in rat brain in vivo: lack of relationship with cystein sulfinate decarboxylase glutamate decarboxylase-associated activity (GAD/CSDII). J. Neurochem., 48:340–344.

    Article  CAS  Google Scholar 

  31. Legay, F., Waise, V.K., Oertel, W.H. and Tappaz, M.L., 1987. Taurine biosynthesis in rat brain: a new specific and sensitive microassay of cysteine sulfinate decaboxylase (CSDI) activity through selective knmunotrapping and its use for distribution studies. J. Neurochem., 48:345–351.

    Article  CAS  Google Scholar 

  32. Lombardini, J.B., 1976. Regional and subcellular studies on taurine in the rat central nervous system. Acta Physiol. Scand., 412:1–48.

    Google Scholar 

  33. Lombardini, J.B., 1977. High affinity uptake systems for taurine on tissue slices and synaptosomal fractions prepared from various brain regions of the rat central nervous system. J. Neurochem., 29:305–312.

    Article  CAS  Google Scholar 

  34. Lombardini, J.B., 1976. Regional and subcellular studies on taurine in the rat nervous system, in “Taurine”, R. Huxtable and A. Barbeau, eds, pp. 311–326, Raven Press, New York.

    Google Scholar 

  35. Lombardini, J.B., 1991. Taurine and retinal function. Brain Res. Rev, 16:151–169.

    Article  CAS  Google Scholar 

  36. Madsen, S., Ottersen, O.P., and Storm-Mathisen, J., 1985. Immunocytochemical visualization of taurine: neuronal localization in the rat cerebellum. Neurosci. Lett., 60:255–260.

    Article  CAS  Google Scholar 

  37. Madsen, S., Ottersen, O.P., and Storm-Mathisen, J., 1987. Immunocytochemical demonstration of taurine, in “The biology of taurine: methods and mechanisms”, R.J. Huxtable, F. Franconi and A. Giotti, eds, pp. 275–284, Plenum Press, New York and London.

    Google Scholar 

  38. Magnusson, K.R., Madl, J.E., Clements, J.R., Wu, J.-Y., Larson, A., and Beitz, A.J., 1988. Colocalization of taurine-and cysteine sulfinic acid decarboxylase-like immunoreactivity in the cerebellum of the rat with the use of monoclonal antibodies against taurine. J. Neuroscl., 8:4551–4564.

    CAS  Google Scholar 

  39. Mandel, P., and Pasantes-Morales, H., 1978. Taurine in the central nervous system. Rev. Neurosci., 3:157–193.

    CAS  Google Scholar 

  40. Martin, G.E., Bendesky, R.J., and Williams, M., 1981. Further evidence for selective antagonism of taurine by 6-aminomethyl-3-methyl-4H-1,2,4-benzothiadiazine-1, 1-dioxide. Brain Res., 299:30–535.

    Google Scholar 

  41. Oja, S.S., and Kontro, P., 1979. Neurotransmitter actions of taurine in the central nervous system, in, “Taurine and neurological disorders”, A. Barbeau and R. J. Huxtable, eds, pp 181–200, Raven Press, New York.

    Google Scholar 

  42. Ottersen, O.P., Madsen, S., Meldrum, B.S., and Storm-Mathisen, J., 1985. Taurine localization in the hippocampal formation of the senegalese baboon Papio papio: an immunocytochemical study with an antiserum against conjugated taurine. Exp. Brain Res., 59:457–462.

    Article  CAS  Google Scholar 

  43. Palkovits, M., Elekes, I., Lang, T., and Patthy, A., 1986. Taurine levels in discrete brain nuclei of rats. J. Neurochem., 47:1333–1335.

    Article  CAS  Google Scholar 

  44. Palmi, M., Frosini, M., and Sgaragli, G.P., 1992. Calcium changes in rabbit cerebrospinal fluid during endotoxin, IL-1, and prostaglandin fever. Pharmacol.Biochem.Behav., 43:1253–1262.

    Article  CAS  Google Scholar 

  45. Pirvola, U., and Panula, P., 1992. Distribution of taurine in the rat cerebellum and insect brain: application of a new antiserum against carbodiimide-conjugated taurine. Histochem. J., 24:266–274.

    Article  CAS  Google Scholar 

  46. Remy, A., Henry, S., and Tappaz, M., 1990. Specific antiserum and monoclonal antibodies against taurine biosynthesis enzyme cysteine sulfinate decarboxylase: identity of brain and liver enzyme. J. Neurochem., 54:870–879.

    Article  CAS  Google Scholar 

  47. Sgaragli, G.P., Carla, V, Magnani, M. and Giotti, A., 1978. Homotaurine and muscimol mimic taurine and GABA effects on muscle tone and temperature regulation. Naunyn Schmiedeberg’ s Arch. Pharmacol., 305:155–158.

    Article  CAS  Google Scholar 

  48. Sgaragli, G.P, Carla, V., Magnani, M., and Galli, A., 1981. Hypothermia induced in rabbits by intracere-broventricular taurine: specificity and relationship with central serotonin (5HT) systems. J. Pharmacol. Exp. Ther., 219:778–785.

    CAS  Google Scholar 

  49. Sgaragli, G.P., and Palmi, M., 1985. The role and mechanism of action of taurine in mammalian thermoregulation, in, “Taurine: biological action and clinical perspectives”, S.S. Oja, L. Athee, P. Kontro. and M.K. Paasonen, eds., pp. 343–357, Alan R. Liss, Inc., New York.

    Google Scholar 

  50. Smith, A.D., and Bolam, J.P., 1989. Neurons of the substantia nigra reticulata receive a dense GABA-containing input from the globus pallidus in the rat. Brain Res., 493:160–167.

    Article  CAS  Google Scholar 

  51. Smith, A.D., and Bolam, J.P., 1991. Convergence of synaptic inputs from the striatum and the globus pallidus onto identified nigrocollicular cells in the rat: a double anterograde labelling study. Neuroscience, 44:45–73.

    Article  CAS  Google Scholar 

  52. Spears, R.M., and Martin, J.P., 1982. Resolution and brain regional distribution of cysteine sulfinate decarboxylase isoenzyme from hog brain. J. Neurochem., 38:981–985.

    Article  Google Scholar 

  53. Storm-Mathisen, J., and Ottersen, O.P., 1986. Antibodies against aminoacid neurotransmitters, in: “Neurohistochemistry: modern methods and applications”, P. Panula, H. Paivarinta and S. Soinila, eds, pp. 107–136, Alan R. Liss, New York.

    Google Scholar 

  54. Stromhaugh, J., Skumlien, S., Storm-Mathisen, J. and Ottersen, O.P., 1987. Immunocytochemical demonstration of putative aminoacid neurotransmitters in the striatonigral pathway. Neuroscience, Suppl. 22:S36.

    Google Scholar 

  55. Wu, J-Y., Bird, E.D., Chen, M.S., and Huang, W.M., 1979. Abnormalities of neurotransmitter enzymes in Huntington’s chorea. Neurochem. Res., 4:575–586.

    Article  CAS  Google Scholar 

  56. Yarbrough, G.G., Singh, D.K., and Taylor, D.A., 1981. Neuropharmacological characterization of a taurine antagonist. J. Pharmacol. Exp. Ther., 219:604–613.

    CAS  Google Scholar 

  57. Yoshida, M., Karasawa, N., Ito, M., Sakai, M., and Nagatsu, I., 1986. Demonstration of taurine immunoreactivity in the rat brain. Neurosci. Res., 3:356–363.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sgaragli, G. et al. (1996). Role of Taurine in Thermoregulation and Motor Control. In: Huxtable, R.J., Azuma, J., Kuriyama, K., Nakagawa, M., Baba, A. (eds) Taurine 2. Advances in Experimental Medicine and Biology, vol 403. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0182-8_57

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0182-8_57

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0184-2

  • Online ISBN: 978-1-4899-0182-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics