Skip to main content

Taurine and Neural Cell Damage

Transport of Taurine in Adult and Developing Mice

  • Chapter
Taurine 2

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 403))

Abstract

There is evidence that taurine protects neural cells from excitotoxicity induced by excitatory amino acids8, forestalls harmful metabolic cascades evoked by ischemia or hypoxia40, and attenuates Ca2+ influx during ischemia20. Taurine also ameliorates symptoms in epilepsy29. The mechanism of this neuroprotection is not known, but it may be related, in addition to neuromodulation38, to osmoregulatory, antioxidant and Ca2+ regulatory effects16.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agostinho, P., Duarte, C.B., Carvalho, A.P., and Oliveira, C.R., 1994, Effect of oxidative stress on the release of [3H]GABA in cultured chick retina cells, Brain Res., 655: 213–221.

    Article  CAS  Google Scholar 

  2. Benveniste, H., Drejer, J., Schousboe, A., and Diemer, N.H, 1984, Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis, J. Neurochem., 43: 1369–1374.

    Article  CAS  Google Scholar 

  3. Bondy, S.C., 1995, The relation of oxidative stress and hyperexcitation to neurological disease, Proc. Soc. Exp. Biol. Med., 208: 337–345.

    Article  CAS  Google Scholar 

  4. Cherubini, E., Ben-Ari, Y., and Krnjevic, K., 1989, Anoxia produces smaller changes in synaptic transmission, membrane potential and input resistance in immature rat hippocampus, J. Neurophysiol., 62: 882–895.

    CAS  Google Scholar 

  5. Collard, K.J., and Menon-Johansson, A.S., 1993, Effects of short-term hypoxia on [3H]glutamate release from preloaded hippocampal and cortical synaptosomes, Neurochem. Res., 8: 165–170.

    Article  Google Scholar 

  6. Colton, C.A., and Gilbert, D., 1985, Effect of H2O2 on excitatory transmission in the lobster neuromuscular junction, Fed. Proc., 44: 1273.

    Google Scholar 

  7. Cook, T.M., and Crutcher, K.A., 1986, Intrahippocampal injection of kainic acid produces significant pyramidal cell loss in neonatal rats, Neuroscience, 18: 79–92.

    Article  CAS  Google Scholar 

  8. French, E.D., Vezzani, A., Whetsell, W.O., Jr., and Schwarcz, R., 1986, Antiexcitotoxic actions of taurine in the rat hippocampus studied in vivo and in vitro, Adv. Exp. Med. Biol., 203: 349–362.

    Article  CAS  Google Scholar 

  9. Gilman, S.C., Bonner, M.J., and Pellmar, T.C., 1992, Peroxide effects on [3H]L-glutamate release by synaptosomes isolated from the cerebral cortex, Neurosci. Lett., 140: 157–160.

    Article  CAS  Google Scholar 

  10. Gilman, S.C., Bonner, M.J., and Pellmar, T.C., 1994, Free radicals enhance basal release of D-[3H]aspar-tate from cerebral cortical synaptosomes, J. Neurochem., 62: 1757–1763.

    CAS  Google Scholar 

  11. Globus, M.Y.-T., Busto, R., Dietrich, W.D., Martinez, E., Valdes, I., and Ginsberg, M.D., 1988, Effect of ischemia on the in vivo release of striatal dopamine, glutamate and γ-aminobutyric acid studied by intracerebral microdialysis, J. Neurochem., 51: 1455–1464.

    Article  CAS  Google Scholar 

  12. Haddad, G.G., and Jiang, C., 1993, O2 deprivation in the central nervous system: on mechanisms of neuronal response, differential sensitivity and injury, Prog. Neurobiol., 40: 277–318.

    Article  CAS  Google Scholar 

  13. Halliwell, B., 1992, Reactive oxygen species and the central nervous system, J. Neurochem., 59: 1609–1623.

    Article  CAS  Google Scholar 

  14. Hara, H., Sukamoto, T., and Kogure, K., 1993, Mechanism and pathogenesis of ischemia-induced neuronal damage, Prog. Neurobiol., 40: 645–670.

    Article  CAS  Google Scholar 

  15. Hayashi, H., Miyata, H., Watanabe, H., Kobayashi, A., and Yamazaki, N., 1989, Effects of hydrogen peroxide on action potentials and intracellular Ca2+ concentration of guinea pig heart, Cardiovasc. Res., 23: 767–773.

    Article  CAS  Google Scholar 

  16. Huxtable, R.J., 1992, The physiological actions of taurine, Physiol. Rev., 72: 101–163.

    CAS  Google Scholar 

  17. Kontro, P., 1984, Comparison of taurine, hypotaurine, and β-alanine uptake in brain synaptosomal preparations from developing and adult mouse, Int. J. Dev. Neurosci., 2: 465–470.

    Article  CAS  Google Scholar 

  18. Kontro, P., and Oja, S.S., 1987, Taurine and GABA release from mouse cerebral cortex slices: potassium stimulation releases more taurine than GABA from developing brain, Dev. Brain Res., 37: 277–291.

    Article  CAS  Google Scholar 

  19. Kontro, P., and Oja, S.S., 1988, Effects of taurine on the influx and efflux of calcium in brain slices of adult and developing mice, Int. J. Neurosci., 38: 103–109.

    Article  CAS  Google Scholar 

  20. Lehmann, A., Hagberg, H., Nyström, B., Sandberg, M., and Hamberger, A., 1985, In vivo regulation of extracellular taurine and other neuroactive amino acids in rabbit hippocampus. Prog. Clin. Biol. Res., 179:289–311.

    CAS  Google Scholar 

  21. Lekieffre, D., Callebert, J., Plotkine, M., and Boulu, R.G., 1992, Concomitant increases in the extracellular concentrations of excitatory and inhibitory amino acids in the rat hippocampus during forebrain ischemia, Neurosci. Lett., 137: 78–82.

    Article  CAS  Google Scholar 

  22. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., 1951, Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193: 265–275.

    CAS  Google Scholar 

  23. Magnusson, K. R., Koerner, J.F., Larson, A.A., Smullin, D.H., Skilling, S.R., and Beitz, A.J., 1991, NMDA-, kainate-and quisqualate-stimulated release of taurine from electrophysiologically monitored rat hippocampal slices, Brain Res., 549: 1–8.

    Article  CAS  Google Scholar 

  24. Matsumoto, K., Ueda, S., Hashimoto, T., and Kuriyama, K., 1991, Ischemic neuronal injury in the rat hippocampus following transient forebrain ischemia: evaluation using in vivo microdialysis, Brain Res., 543: 236–242.

    Article  CAS  Google Scholar 

  25. Menéndez, N., Herreras, O., Solis, J.M., Herranz, A.S., and Martin del Rio, R., 1989, Extracellular taurine increase in rat hippocampus evoked by specific glutamate receptor activation is related to the excitatory potency of glutamate agonists, Neurosci. Lett., 102: 64–69.

    Article  Google Scholar 

  26. Menéndez, N., Solis, J.M., Herreras, O., Herranz, A.S., and Martin del Rio, R., 1990, Role of endogenous taurine on the glutamate analogue-induced neurotoxicity in the rat hippocampus in vivo, J. Neurochem., 55: 714–717.

    Article  Google Scholar 

  27. Nabetani, M., and Okada, Y., 1994, Developmental and regional differences in the vulnerability of rat hippocampal slices to brief and prolonged periods of hypoxia, Dev. Neurosci., 16: 301–306.

    Article  CAS  Google Scholar 

  28. Oja, S.S., and Kontro, P., 1983, Taurine, in: “Handbook of Neurochemistry”, Vol. 3, 2nd edn, A. Lajtha, ed., Plenum Press, New York, pp. 501–533.

    Google Scholar 

  29. Oja, S.S., and Kontro, P., 1983, Free amino acids in epilepsy: possible role of taurine, Acta Neurol. Scand., 67, Suppl., 93: 5–20.

    Google Scholar 

  30. Oja, S.S., Korpi, E.R., and Saransaari, P., 1990, Modification of chloride flux across brain membranes by inhibitory amino acids in developing and adult mice, Neurochem. Res., 15: 797–804.

    Article  CAS  Google Scholar 

  31. O’Regan, M.H., Smith-Barbour, M., Perkins, L.M., and Phillis, J.W., 1995, A possible role for phospholi-pases in the release of neurotransmitter amino acids from ischemic rat cerebral cortex, Neurosci. Lett., 185: 191–194.

    Article  Google Scholar 

  32. Palmeira, CM., Santos, M.S., Carvalho, A.P., and Oliveira, C.R., 1993, Membrane lipid peroxidation induces changes in γ-[3H]aminobutyric acid transport and calcium uptake by synaptosomes, Brain Res., 609: 117–123.

    Article  CAS  Google Scholar 

  33. Pellegrini-Giampietro, D.E., Cherici, G., Alesiani, M., Carla, V., and Moroni, F., 1990, Excitatory amino acid release and free radical formation may cooperate in the genesis of ischemia-induced neuronal damage, J. Neurosci., 10: 1035–1041.

    CAS  Google Scholar 

  34. Pellmar, T.C., Neel, K.L., and Lee, K.H., 1989, Free radicals mediate peroxidative damage in the guinea pig hippocampus in vitro, J. Neurosci. Res., 24: 437–444.

    Article  CAS  Google Scholar 

  35. Phillis, J.W., Walter, G.A., and Simpson, R.E., 1991, Brain adenosine and transmitter amino acid release from the ischemic rat cerebral cortex: effect of the adenosine deaminase inhibitor deoxycoformycin, J. Neurochem., 56: 644–650.

    Article  CAS  Google Scholar 

  36. Pulsinelli, W.A., Brierley, J.B., and Plum, F., 1982, Temporal profile of neuronal damage in a model of transient forebrain ischemia, Ann. Neurol., 11: 491–498.

    Article  CAS  Google Scholar 

  37. Saransaari, P., and Oja, S.S., 1991, Excitatory amino acids evoke taurine release from cerebral cortex slices from adult and developing mice, Neuroscience, 45: 451–459.

    Article  CAS  Google Scholar 

  38. Saransaari, P., and Oja, S.S., 1992, Release of GABA and taurine from brain slices, Prog. Neurobiol., 38: 455–482.

    Article  CAS  Google Scholar 

  39. Saransaari, P., and Oja, S.S., 1994, Taurine release from mouse hippocampal slices: effects of glutama-tergic substances and hypoxia, Adv. Med. Exp. Biol, 359: 279–287.

    CAS  Google Scholar 

  40. Schurr, A., Tseng, M.T., West, C.A., and Rigor, B.M., 1987, Taurine improves the recovery of neuronal function following cerebral hypoxia: an in vitro study, Life Sci., 40: 2059–2066.

    Article  CAS  Google Scholar 

  41. Szatkowski, M., and Attwell, D., 1994, Triggering and execution of neuronal death in brain ischemia: two phases of glutamate release by different mechanisms, Trends Neurosci., 17: 359–365.

    Article  CAS  Google Scholar 

  42. Watson, B.D., Busto, R., Goldberg, W.J., Santiso, M., Yoshida, S., and Ginsberg, M.D., 1984, Lipid peroxidation in vivo induced by reversible global ischemia in rat brain, J. Neurochem., 42: 268–274.

    Article  CAS  Google Scholar 

  43. Wills, E.D., 1969, Lipid peroxide formation in microsomes. General considerations, Biochem. J., 113: 315–324.

    CAS  Google Scholar 

  44. Wu, J.-Y., Johansen, F.F., Lin, C.-T., and Liu, J.-W., 1987, Taurine system in the normal and ischemic rat hippocampus, Adv. Exp. Med. Biol., 217: 265–274.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Saransaari, P., Oja, S.S. (1996). Taurine and Neural Cell Damage. In: Huxtable, R.J., Azuma, J., Kuriyama, K., Nakagawa, M., Baba, A. (eds) Taurine 2. Advances in Experimental Medicine and Biology, vol 403. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0182-8_52

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0182-8_52

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0184-2

  • Online ISBN: 978-1-4899-0182-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics