Skip to main content

Interaction of γ-L-Glutamyltaurine with Kainate-Induced Cyclic Amp Formation in the Rat Hippocampus

  • Chapter
Taurine 2

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 403))

Abstract

γ-L-Glutamyltaurine (LGT) is the most abundant taurine-containing peptide in the CNS19, 31, being located mainly in neurons30. LGT is synthesized by γ-glutamyltransferase (EC 2.3.2.2) and can be degraded to glutamate and taurine by γ-glutamyltransferase or to 5-oxoproline and taurine by γ-glutamylcyclotransferase (EC 2.3.2.4)17, 31. Some intriguing central effects (e. g. anticonflict and antiepileptic actions) of LGT have been reported10, 16. They may be attributed to the interaction of LGT with different steps of glutamatergic neurotransmission32–34.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aramori, I., and Nakanishi, S. 1992, Signal transduction and pharmacological characteristics of a metabotropic glutamate receptor, mGluR1, in transfected CHO cells, Neuron, 8: 757–765.

    Article  CAS  Google Scholar 

  2. Baba, A., Lee, E., Tatsuno, T., and Iwata, H. 1982, Cysteine sulfinic acid in the central nervous system: antagonistic effect of taurine on cysteine sulfinic acid-stimulated formation of cyclic AMP in guinea pig hippocampal slices, J. Neurochem., 38, 1280–1285.

    Article  CAS  Google Scholar 

  3. Baba, A., Nishiuchi, Y., Uemura, A., and Iwata, H., 1988, Mechanism of excitatory amino acid-induced accumulation of cyclic AMP in hippocampal slices: role of extracellular chloride, J. Pharmacol. Exp. Ther., 245: 299–304.

    CAS  Google Scholar 

  4. Barnes, J.M., Murphy, P.A., Kirkham, D., and Henley, M. 1993, Interaction of guanine nucleotides with [3H]kainate and 6-[3H]cyano-7-nitroquinoxaline-2, 3-dione binding in goldfish brain, J. Neurochem., 61: 1685–1691.

    Article  CAS  Google Scholar 

  5. Ben-Ari, Y., and Represa, A. 1990, Brief seizure episodes induce long-term potentiatiom and mossy fibre sprouting in the hippocampus, Trends Neurosci., 13: 312–318.

    Article  CAS  Google Scholar 

  6. Bird, S.J., and Gulley, R.L. 1979, Evidence against a presynaptic mechanism for kainate neurotoxicity in the cochlear nucleus, Neurosci. Lett., 15: 55–60.

    Article  CAS  Google Scholar 

  7. Cali, J.J., Zwaagstra, J.C., Mons, N., Cooper, D.M.F., and Krupinski, J. 1994, Type VIII adenylyl cyclase. A Ca2+/calmodulin-stimulated enzyme expressed in discrete regions of rat brain, J. Biol. Chem., 16: 12190–12195.

    Google Scholar 

  8. Choi, D.W. 1988, Glutamate neurotoxicity and diseases of the nervous system, Neuron, 1: 623–634.

    Article  CAS  Google Scholar 

  9. Collingridge, G.L., and Lester, A. J. 1989, Excitatory amino acid receptors in the vertebrate central nervous system, Pharmacol. Rev., 40: 143–210.

    Google Scholar 

  10. Eder, T., Rieder, P., and Weiser, M. 1982, Über die Hemmwirkung von Gamma-L-Glutamyl-Taurin und einiger anderer Antikonvulsiva auf durch Umweltreize auslösbare epileptiforme Anfalle mongolischer Wustenrennmäuse (Meriones unguiculatus), Wiener Tierärztl. Monatschr., 69: 16–18.

    CAS  Google Scholar 

  11. Ferrendelli, J.A., Chang, M.M., and Kinscherf, D.A., 1974, Elevation of cyclic GMP levels in central nervous system by excitatory and inhibitory amino acids, J. Neurochem., 22: 535–540.

    Article  CAS  Google Scholar 

  12. Foster, A.C., Mena, E.E., Monaghan, D.T., and Cotman, C.W. 1981, Synaptic localization of kainic acid binding sites, Nature, 289: 73–75.

    Article  CAS  Google Scholar 

  13. Greengard, P., Jen, J., Nairn, A.C., and Stevens, CF. 1991, Enhancement of the glutamate response by cAMP-dependent protein kinase in hippocampal neurons, Science, 253: 1135–1138.

    Article  CAS  Google Scholar 

  14. Jones, A.W., Smith, D.A.S., and Watkins, J.C. 1984, Structure-activity relations of dipeptide antagonists of excitatory amino acids, Neuroscience, 13: 573–581.

    Article  CAS  Google Scholar 

  15. Kendall, D.A., Mills, P.J., and Firth, J.L. 1992, Direct and indirect stimulations of cyclic AMP formation in human brain, Br. J. Pharmacol. 105: 899–902.

    Article  CAS  Google Scholar 

  16. Kuribara, H., and Tadokoro, S. 1982, An anticonflict effect of gamma-L-glutamyltaurine (Litoralon) in rats, Japan J. Pharmacol, 32: 1067–1074.

    Article  CAS  Google Scholar 

  17. Lähdesmäki, P. 1987, Biosynthesis of taurine peptides in brain cytoplasmic fraction in vitro, Int. J. Neurosci., 37: 79–84.

    Article  Google Scholar 

  18. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. 1951, Protein measurement with the Folin phenol reagent, J. Biol Chem. 193: 265–275.

    CAS  Google Scholar 

  19. Marnela, K.M., Morris, M.R., Panico, M., Timonen, M., and Lähdesmäki, P. 1985, Glutamyl-taurine is the predominant synaptic taurine peptide, J. Neurochem., 44: 752–754.

    Article  CAS  Google Scholar 

  20. Nakanishi, S. 1992, Molecular diversity of glutamate receptors and implications for brain function, Science, 258: 597–603.

    Article  CAS  Google Scholar 

  21. Newman, M., and McIlwain, H. 1977, Adenosine as a constituent of brain and of isolated cerebral tissues, and its relationship to the generation of adenosine 3’:5’-cyclic monophosphate, Biochem. J. 164: 131–146.

    CAS  Google Scholar 

  22. Olney, J.W., Feller, T., and DeGubareff, T. 1979, Acute dendrotoxic changes in the hippocampus of kainate treated rats, Brain Res. 176: 91–100.

    Article  CAS  Google Scholar 

  23. Rechardt, L., and Hervonen, H. 1985, Cytochemical demonstration of adenylate cyclase activity with cerium, Histochemistry, 82: 501–505.

    Article  CAS  Google Scholar 

  24. Schoepp, D.D., and Conn, P.J. 1993, Metabotropic glutamate receptors in brain function and pathology, Trends Pharmacol. Sci. 14: 13–20.

    Article  CAS  Google Scholar 

  25. Schwarcz, R., and Coyle, J.T. 1977, Neurochemical sequelae of kainate injections in corpus striatum and substantia nigra of the rat, Life Sci., 20: 431–436.

    Article  CAS  Google Scholar 

  26. Seeburg, P.H. 1993, The TINS/TIPS lecture. The molecular biology of mammalian glutamate receptor channels, Trends Neurosci. 16: 359–365.

    Article  CAS  Google Scholar 

  27. Shimizu, H., Ichishita, H., and Odagiri, H. 1974, Stimulated formation of cyclic adenosine 3’, 5’-mono-phosphate by aspartate and glutamate in cerebral cortical slices of guinea pig, J. Biol. Chem., 249: 5955–5962.

    CAS  Google Scholar 

  28. Shimizu, H., Ichishita, H., and Umeda, I. 1975, Inhibition of glutamate-elicited accumulation of cyclic adenosine 3’, 5’-monophosphate in brain slices by a, co-diaminocarboxylic acids, Mol. Pharmacol. 11: 866–873.

    CAS  Google Scholar 

  29. Tanaka, T., Tanaka, S., Fujita, T., Takano, K., Fukuda, H., Sako, K., and Yonemasu, Y. 1991, Experimental complex partial seizures induced by a microinjection of kainic acid into limbic structures, Prog. Neurobiol., 38:317–334.

    Article  Google Scholar 

  30. Tomida, Y., and Kimura, H. 1987, Immunohistochemical and biochemical studies of substances with taurine-like immunoreactivity in the brain, Acta Histochem. Cytochem., 20: 31–40.

    Article  CAS  Google Scholar 

  31. Varga, V., Török, K., Feuer, L., Gulyás, J., and Somogyi, J. 1985, γ-Glutamyltransferase in the brain and its role in formation of γ-L-glutamyl-taurine, in: “Taurine: Biological Actions and Clinical Perspectives”, S.S. Oja, L. Ahtee, P. Kontro, and M.K. Paasonen, eds., Alan R. Liss, New York, pp. 115–125.

    Google Scholar 

  32. Varga, V., Janáky, R., Marnela, K.-M., Gulyás, J., Kontro, P., and Oja, S.S. 1989, Displacement of excitatory amino acid receptor ligands by acidic oligopeptides, Neurochem. Res. 14: 1223–1227.

    Article  CAS  Google Scholar 

  33. Varga, V, Janáky, R., Marnela, K.-M., Saransaari, P., and Oja, S.S. 1994, Interactions of γ-L-glutamyl-taurine with excitatory aminoacidergic neurotransmission, Neurochem. Res. 19: 243–248.

    Article  CAS  Google Scholar 

  34. Varga, V, Janáky, R., Saransaari, P., and Oja, S.S. 1994, Endogenous γ-L-glutamyl and β-L-aspartyl peptides and excitatory aminoacidergic neurotransmission in the brain, Neuropeptides, 27: 19–26.

    Article  CAS  Google Scholar 

  35. Wang, L.-Y., Salter, M.W., and MacDonald, J.F. 1991, Regulation of kainate receptors by cAMP-dependent protein kinase and phosphatases, Science, 253: 1132–1135.

    Article  CAS  Google Scholar 

  36. Werner, P., Voigt, M., Keinänen, K., Wisden, W., and Seeburg, P.H. 1991, Cloning of a putative high-affinity kainate receptor expressed predominantly in hippocampal CA3 cells, Nature, 351: 742–744.

    Article  CAS  Google Scholar 

  37. Worley, P.F., Baraban, J.M., De Souza, E.B., and Snyder, S.H. 1986, Mapping second messenger systems in the brain: differential localization of adenylate cyclase and protein kinase C, Proc. Natl. Acad. Sci. USA, 83: 4053–4057.

    Article  CAS  Google Scholar 

  38. Ziegra, C.J., Willard, J.M., and Oswald, R.E. 1992, Coupling of a purified goldfish brain kainate receptor with a pertussis toxin-sensitive G protein, Proc. Natl. Acad. Sci. USA. 89: 4134–4138.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Varga, V., Janáky, R., Takáts, A., Oja, S.S., Dohovics, R., Rechardt, L. (1996). Interaction of γ-L-Glutamyltaurine with Kainate-Induced Cyclic Amp Formation in the Rat Hippocampus. In: Huxtable, R.J., Azuma, J., Kuriyama, K., Nakagawa, M., Baba, A. (eds) Taurine 2. Advances in Experimental Medicine and Biology, vol 403. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0182-8_51

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0182-8_51

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0184-2

  • Online ISBN: 978-1-4899-0182-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics