Taurine 2 pp 463-471 | Cite as

A New Neuromodulatory Action of Taurine: Long-Lasting Increase of Synaptic Potentials

  • Mario Galarreta
  • Julián Bustamante
  • Rafael Martín del Río
  • José M. Solís
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 403)


The physiological role of taurine, one of the most abundant free amino acids in the mammalian brain, is still poorly understood. A solid body of electrophysiological studies has demonstrated that taurine application causes neuroinhibitory actions in different regions of the CNS. In this sense, taurine has been shown to reduce the spontaneous neuronal firing, to hyperpolarize the resting membrane potential, to diminish the membrane input resistance and to increase the membrane Cl- conductance in different CNS neurons2, 4, 7, 19, 23, 24. On the basis of these observations, taurine has been proposed as a putative neuroinhibitory transmitter in the CNS. However, because of the lack of selective taurine antagonists, this possibility has not been unambiguously demonstrated so far. In fact, many of the taurine-in-duced neuroinhibitory effects have been shown to be blocked by GABA and/or glycine receptor antagonists4, 7, 20.


Synaptic Response Synaptic Potential Synaptic Efficacy fEPSP Slope Nerve Terminals21 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bureau, M.H. and Olsen, R.W. 1991, Taurine acts on a subclass of GABAA receptors in mammalian brain in vitro, Eur. J. Pharmacol, 207:9–16.CrossRefGoogle Scholar
  2. 2.
    Curtis, D.R., Phillis, J.W. and Watkins, J.C. 1961, Actions of amino acids on the isolated hemisected spinal cord of the toad, Br. J. Pharmacol., 16:262–283.Google Scholar
  3. 3.
    Franconi, F., Martini, F., Stendardi, I., Matucci, R., Zilleti, L. and Giotti, A. 1982, Effect of taurine on calcium levels and contractility in guinea-pig ventricular strips, Biochem. Pharmacol., 31:3181–3185.CrossRefGoogle Scholar
  4. 4.
    Frederickson, R.C.A., Neuss, M., Morzorati, S.L. and McBride, W.J. 1978, A comparison of the inhibitory effects of taurine and GABA on identified Purkinje cell and other neurons in the cerebellar cortex of the rat, Brain Res., 145:117–126.CrossRefGoogle Scholar
  5. 5.
    Galarreta, M., Bustamente, J., Martín del Río, R. and Solís, J.M. 1996, Taurine induces a long-lasting increase of synaptic efficacy and axon excitability in the hippocampus, J.Neurosci. 16:92–102.Google Scholar
  6. 6.
    Gruener, R., Bryant, H., Markovitz, D., Huxtable, R.J. and Bressler, R. 1976, Ionic actions of taurine on nerve and muscle membranes: electrophyisologic studies, in: “Taurine”, Huxtable, R.J. and Barbeau A. (Eds.), Raven Press, New York, pp. 225–242.Google Scholar
  7. 7.
    Häusser, M.A., Yung, W.H. and Lacey, M.G. 1992, Taurine and glycine activate the same Cl- conductance in the substantia nigra dopamine neurons, Brain Res., 571:103–108.CrossRefGoogle Scholar
  8. 8.
    Huxtable, R.J. 1989, Taurine in the central nervous system and the mammalian actions of taurine, Prog. Neurobiol, 32:471–533.CrossRefGoogle Scholar
  9. 9.
    Huxtable, R.J. and Sebring, L.A. 1986, Towards a unifying theory for the action of taurine, Trends Pharmac.Sci., 7:481–485.CrossRefGoogle Scholar
  10. 10.
    Kamisaki, Y., Maeda, K., Ishimura, M., Omura, H. and Itoh, T. 1993, Effects of taurine on depolarization-evoked release of amino acids from rat cortical synaptosomes, Brain Res., 627:181–185.CrossRefGoogle Scholar
  11. 11.
    Kamiya, H. and Zucker, R.S. 1994, Residual Ca2+ and short-term synaptic plasticity, Nature, 371:603–606.CrossRefGoogle Scholar
  12. 12.
    Kontro, P. and Oja, S.S. 1981, Hypotaurine transport in brain slices: comparison with taurine and GABA, Neurochem. Res., 6:1179–1191.CrossRefGoogle Scholar
  13. 13.
    Kontro, P. and Oja, S.S. 1983, Binding of taurine to brain synaptic membranes. In: “CNS Receptors: From Molecular Pharmacology to Behavior”, Mandel, P. and DeFeudis, F.V. (Eds.), Raven Press, New York, pp. 23–34.Google Scholar
  14. 14.
    Lerma, J., Herranz, A.S., Herreras, O., Abraira, V. and Martín del Río, R. 1986, In vivo determination of extracellular concentrations of amino acids in the rat hippocampus. A method based on brain dialysis and computerized analysis, Brain Res., 384:145–155.CrossRefGoogle Scholar
  15. 15.
    Li, Y.-P. and Lombardini, J.B. 1991, Taurine inhibits protein kinase C-catalyzed phosphorylation of specific proteins in a rat cortical P2 fraction, J. Neurochem., 56:1747–1753.CrossRefGoogle Scholar
  16. 16.
    Liu, Q.-R., López-Corcuera, B., Nelson, H., Mandiyan, S. and Nelson, N. 1992, Cloning and expression of cDNA encoding the transporter of taurine and β-alanine in mouse brain, Proc. Natl. Acad. Sci. USA, 89:12145–12149.CrossRefGoogle Scholar
  17. 17.
    Malminen, O. and Kontro, P. 1986, Modulation of the GABA-benzodiazepine receptor complex by taurine in rat brain membranes, Neurochem. Res., 11:85–94.CrossRefGoogle Scholar
  18. 18.
    Namima, M., Okamoto, K. and Sakai, Y. 1983, Modulatory action of taurine on the release of GABA in cerebellar slices of guinea pig, J. Neurochem., 40:1–9.CrossRefGoogle Scholar
  19. 19.
    Okamoto, K., Kimura, H. and Sakai, Y. 1983, Effects of taurine and GABA on Ca spikes and Na spikes in cerebellar Purkinje cells in vitro: intrasomatic study, Brain Res., 260:249–259.CrossRefGoogle Scholar
  20. 20.
    Okamoto, K. and Sakai, Y. 1981, Inhibitory actions of taurocyamine, hypotaurine, homotaurine, taurine and GABA on spike discharges of Purkinje cells, and localization of sensitive sites, in guinea pig cerebellar slices, Brain Res., 206:371–386.CrossRefGoogle Scholar
  21. 21.
    Pasantes-Morales, H. and Gamboa, A. 1980, Effect of taurine on 45Ca2+ accumulation in rat brain synaptosomes, J. Neurochem., 34:244–246.CrossRefGoogle Scholar
  22. 22.
    Sebring, L.A. and Huxtable, R.J. 1985, Taurine modulation of calcium binding to cardiac sarcolemma, J. Pharmacol. Exp. Therap., 232:445–451.Google Scholar
  23. 23.
    Taber, K.H., Lin, C.-T., Liu, J.-W., Thalmann, R.H. and Wu, J.-Y. 1986, Taurine in hippocampus: localization and postsynaptic action, Brain Res., 386:113–121.CrossRefGoogle Scholar
  24. 24.
    Zeise, M. 1985, Taurine on hippocampal slices: comparison to GABA and glycine, and antagonism by 4-aminopyridine, in: “Taurine: Biological Actions and Clinical Perspectives”, Oja, S.S., Ahtee, L., Kontro, P. and Paasonen, M.K., (Eds.), Alan R. Liss, Inc., pp. 281-287.Google Scholar
  25. 25.
    Zucker, R.S. 1989, Short-term synaptic plasticity, Ann. Rev. Neurosci., 12:13–31.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Mario Galarreta
    • 1
  • Julián Bustamante
    • 2
  • Rafael Martín del Río
    • 1
  • José M. Solís
    • 1
  1. 1.Servicio de Neurobiología Depto. InvestigatiónHospital Ramón y CajalMadridSpain
  2. 2.Depto. Fisiología, Facultad de MedicinaUniversidad ComplutenseMadridSpain

Personalised recommendations