Taurine 2 pp 427-433 | Cite as

In Vivo Release of Taurine from Rat Neostriatum and Substantia Nigra

  • Loria Bianchi
  • John P. Bolam
  • Francesca Galeffi
  • Maria Frosini
  • Mitri Palmi
  • Gianpietro Sgaragli
  • Laura Della Corte
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 403)


Taurine has been shown to fulfil many of the criteria of a neurotransmitter in the basal ganglia. The neostriatum (STR) and substantia nigra (SN) contain high levels of taurine and its synthetic enzyme sulfinoalanine decarboxylase (EC, commonly referred to as cysteine sulfinic acid decarboxylase, CSDI)19, 29, 34, 41, 43, 45. The presence of a high affinity uptake system for taurine has been detected in both the STR11, 29 and SN14. Furthermore, uptake and release studies of exogenous radiolabelled taurine suggest that neurones identified as medium-size densely spiny striatonigral neurones contain taurine and release it at their terminals in the SN15 (see Table 1).


Substantia Nigra Kainic Acid Taurine Release Cysteine Sulfinate Decarboxylase Cysteine Sulfinate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albin, R.L., Young, A.B. and Penney, J.B. 1989, The functional anatomy of basal ganglia disorders. TINS, 12:366–375.Google Scholar
  2. 2.
    Bianchi, L., Delia Corte, L., Federico, S. and Bolam P. 1991, Release of taurine from rat striatum in vitro. Eur. J. Neurosci., Suppl. 4:151.Google Scholar
  3. 3.
    Bianchi, L., Sharp, T., Bolam, J.P. and Delia Corte, L. 1994, The effect of kainic acid on the release of GABA in rat neostriatum and substantia nigra. NeuroReport, 5:1233–1236.CrossRefGoogle Scholar
  4. 4.
    Bolam, J.P., Clarke, D.J., Smith, A.D. and Somogyi, P. 1983, A type of aspiny neurone in the rat neostriatum accumulates [3H]γ-aminobutyric acid: combination of Golgi-staining, autoradiography, and electron microscopy. J. Comp. Neurol. 213:121–134.CrossRefGoogle Scholar
  5. 5.
    Bolam, J.P., Powell, J.F., Wu J.-Y. and Smith, A.D. 1985, Glutamate decarboxylase-immunoreactive structures in the rat neostriatum: a correlated light and electron microscopic study including a combination of Golgi impregnation with immunocytochemistry. J. Comp. Neurol. 237:1–20.CrossRefGoogle Scholar
  6. 6.
    Bureau, M.H. and Olsen, R.W. 1991, Taurine acts on a subclass of GABAA receptors in mammalian brain in vitro. Eur. J. Pharmacol. 207:9–16.CrossRefGoogle Scholar
  7. 7.
    Chevalier, G. and Deniau, J.M. 1990, Disinhibition as a basic process in the expression of striatal functions. TINS, 13:277–280.Google Scholar
  8. 8.
    Choi, D.W. 1987, Ionic dependence of glutamate neurotoxicity. J. Neurosci. 7:369–379.Google Scholar
  9. 9.
    Choi, D.W., Koh, J. and Peters, S. 1988, Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J. Neurosci. 8:185–196.Google Scholar
  10. 10.
    Clarke, D.J., Smith, A.D. and Bolam, J.P. 1983, Uptake of [3H]taurine into medium-size neurones and into identified stratonigral neurones in the rat neostriatum. Brain Res. 289:342–348.CrossRefGoogle Scholar
  11. 11.
    Collins, G.G.S. 1974, The rates of synthesis, uptake and disappearance of [14C]taurine in eight areas of the rat central nervous system. Brain Res. 76:447–459.CrossRefGoogle Scholar
  12. 12.
    Cowan, R.L., Wilson, C.J., Emson, P.C. and Heizmann, C.W. 1990, Parvalbumin-containing GABAergic interneurones in the rat neostriatum. J. Comp. Neurol. 302:197–205.CrossRefGoogle Scholar
  13. 13.
    Delia Corte L., Bianchi L., Federico S. and Michelassi S. 1993, In vivo HPLC estimation of extracellular aspartate, glutamate, taurine and GABA in rat striatum: improved methodology. Eur. J. Neurosci. Suppl. 6:261.Google Scholar
  14. 14.
    Delia Corte, L., Bolam, J.P. and Smith, A.D. 1987, Uptake, localisation and release of taurine in the rat basal ganglia. In: “The Biology of Taurine”, Huxtable, R.J., Franconi, F. and Giotti, A. (eds), pp. 285–294. Plenum Publ. Corp., New York.CrossRefGoogle Scholar
  15. 15.
    Delia Corte, L., Bolam, J.P, Clarke, D.J., Parry, D.M. and Smith, A.D. 1990, Sites of [3H]taurine uptake in the rat substantia nigra in relation to the release of taurine from striatonigral pathway. Eur. J. Neurosci. 2:50–61.CrossRefGoogle Scholar
  16. 16.
    De Long, M.R. 1990, Primate models of movement disorders of basal ganglia origin. TINS, 13:281–285.Google Scholar
  17. 17.
    De Long, M.R. and Wichmann, T. 1993, Basal ganglia-thalamocortical circuits in parkinsonian signs. Neuroscience, 1:18–26.Google Scholar
  18. 18.
    Dray, A. and Straughan, D.W. 1976, Synaptic mechanisms in the substantia nigra. J. Pharm. Pharmacol. 28:400–405.CrossRefGoogle Scholar
  19. 19.
    Farrant, M. and Webster, R.A. 1989, Compartmental distribution of endogenous amino acids in the substantia nigra of the rat. Brain Res. 480:344–348.CrossRefGoogle Scholar
  20. 20.
    Frandsen, A., Drejer, J. and Schousboe, A. 1989, Direct evidence that excitotoxicity in cultured neurones is mediated via N-methyl-D-aspartate (NMDA) as well as non-NMDA receptors. J. Neurochem. 53:297–299.CrossRefGoogle Scholar
  21. 21.
    Häusser, M.A., Yung, W.H. and Lacey, M.G. 1992, Taurine and glycine activate the same Cl- conductance in substantia nigra dopamine neurones. Brain Res. 571:103–108.CrossRefGoogle Scholar
  22. 22.
    Honoré, T., Davies, S.N., Drejer, J., Fletcher, E.J., Jacobsen, P., Lodge, D. and Nielsen, D. 1988, Quinaxolinediones: potent competitive non-NMDA glutamate receptor antagonists. Science, 201:701–703.CrossRefGoogle Scholar
  23. 23.
    Kaakkola, S. and Kä äriäinen, T. 1980, Contralateral circling behaviour induced by intranigral injection of taurine in rats. Acta Pharmacol. Toxicol. 46:293–298.CrossRefGoogle Scholar
  24. 24.
    Kamata, K., Kameyana, T., Okuyama, S., Hashimoto, S. and Aihara, H. 1985, Contralateral circling behaviour induced by intranigral micro injections of taurine and GABA in rats. Brain Res. 343:275–282.CrossRefGoogle Scholar
  25. 25.
    Kitai, S.T., Kocsis, J.D., Preston, R.J. and Sugimori, M. 1976, Monosynaptic inputs to caudate neurones identified by intracellular injection of horseradish peroxidase. Brain Res. 109:601–606.CrossRefGoogle Scholar
  26. 26.
    Korf, J. and Venema, K. 1983, Amino acids in the substantia nigra of rats with striatal lesions produced by kainic acid. J. Neurochem. 40:1171–1173.CrossRefGoogle Scholar
  27. 27.
    Lapper, S.R., Smith, Y., Sadikot, A.F., Parent, A. and Bolam, J.P. 1992, Cortical input to parvalbumin-im-munoreactive neurones in the putamen of squirrel monkey. Brain Res. 580:215–224.CrossRefGoogle Scholar
  28. 28.
    Legay, F., Lecestre, D. and Tappaz, M. 1987, Taurine biosynthesis in rat brain in vivo: lack of relationship with cysteinesulfinate decarboxylase glutamate decarboxylase-associated activity (GAD/CSDII). J. Neurochem. 48:340–344.CrossRefGoogle Scholar
  29. 29.
    Lombardini, J.B. 1976, Regional and subcellular studies on taurine in the rat central nervous system. In: “Taurine”, Huxtable, R.J. and Barbeau, A., eds., pp. 311–326, Raven Press, New York.Google Scholar
  30. 30.
    Magnusson, K.R., Koerner, J.F., Larson, A.A., Smullin, D.H., Skilling, S.R. and Beitz, A.J. 1991, NMDA-, kainate-and quisqualate-stimulated release of taurine from electrophysiologically monitored rat hippo-campal slices. Brain Res. 549:1–8.CrossRefGoogle Scholar
  31. 31.
    Martin, G.E., Bendesky, R.J. and Williams, M. 1981, Further evidence for selective antagonism of taurine by 6-aminomethyl-3-methyl-4H-1, 2, 4-benzothiadiazine-1, 1-dioxide. Brain Res. 299:530–535.CrossRefGoogle Scholar
  32. 32.
    Martin, L.J., Blackstone, C.D., Levey, A.J., Huganir, R.L. and Price, D.L. 1993, AMPA glutamate receptor subunits are differentially distributed in rat brain. Neuroscience, 53:327–358.CrossRefGoogle Scholar
  33. 33.
    Menendez, N., Solìs, J.M., Herreras, O., Herranz, A.S. and Martìn del Rìo, R. 1990, Role of endogenous taurine on the glutamate analogue-induced neurotoxicity in the rat hippocampus in vivo. J. Neurochem. 55:714–717.CrossRefGoogle Scholar
  34. 34.
    Palkovits, M., Elekes, I., Lang, T. and Patthi, A. 1986, Taurine levels in discrete brain nuclei of rats. J. Neurochem. 47:1333–1335.CrossRefGoogle Scholar
  35. 35.
    Pasantes-Morales, H. and Schousboe, A. 1988, Volume regulation in astrocytes: a role for taurine as an osmoeffector. J. Neurosci. 20:505–509.Google Scholar
  36. 36.
    Rothman, S.M. 1985, The neurotoxicity of excitatory amino acids is produced by passive chloride influx. J. Neurosci. 5:1483–1489.Google Scholar
  37. 37.
    Sgaragli, G.P., Carlà, V., Magnani, M. and Giotti, A. 1978, Homotaurine and muscimol mimic taurine and GABA effects on muscle tone and temperature regulation. N.-S. Arch. Pharmacol. 305:155–158.CrossRefGoogle Scholar
  38. 38.
    Smith, A.D. and Bolam, J.P. 1990, The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. 1990. TINS, 13:259–285.Google Scholar
  39. 39.
    Smith, A.D. and Bolam, J.P. 1991, Convergence of synaptic inputs from the striatum and the globus pallidus onto identified nigrocollicular cells in the rat: a double anterograde labelling study. Neuroscience, 44:45–73.CrossRefGoogle Scholar
  40. 40.
    Solis, J.M., Herranz, A.S., Herreras, O., Lerma J. and Martin del Rio, R. 1988, Does taurine act as an osmoregulatory substance in the rat brain? Neurosci. Lett. 91:53–58.CrossRefGoogle Scholar
  41. 41.
    Spears, R.M. and Martin, J.P. 1982, Resolution and brain regional distribution of cysteine sulfinate decarboxylase isoenzyme from hog brain. J. Neurochem. 38:985–991.CrossRefGoogle Scholar
  42. 42.
    Strømhaugh, J., Skumlien, S., Storm-Mathisen, J. and Ottersen, O.P. 1987, Immunocytochemical demonstration of putative amino acid neurotransmitters in the striatonigral pathway. Neuroscience, Suppl. 22:S36.Google Scholar
  43. 43.
    Tossman, U., Jonsson, G. and Ungerstedt, U. 1986, Regional distribution and extracellular levels of amino acids in rat central nervous system. Acta Physiol. Scand. 127:533–545.CrossRefGoogle Scholar
  44. 44.
    Wade, J.V., Olson, J.P., Samson, F.E., Nelson, S.R. and Pazdernik, T.L. 1988, A possible role for taurine in osmoregulation within the brain. J. Neurochem. 51:740–745.CrossRefGoogle Scholar
  45. 45.
    Wu, J.Y. 1982, Purification and characterisation of cysteic acid and cysteine sulfinic acid decarboxylase and L-glutamate decarboxylase from bovine brain. Proc. Natl. Acad. Sci. USA, 79:4270–4274.CrossRefGoogle Scholar
  46. 46.
    Yarbrough, G.G., Singh, D.K. and Taylor, D.A. 1981, Neuropharmacological characterisation of a taurine antagonist. J. Pharmacol. Exp. Ther. 219:604–613.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Loria Bianchi
    • 1
  • John P. Bolam
    • 2
  • Francesca Galeffi
    • 1
  • Maria Frosini
    • 3
  • Mitri Palmi
    • 3
  • Gianpietro Sgaragli
    • 3
  • Laura Della Corte
    • 1
  1. 1.Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”Università degli Studi di FirenzeFlorenceItaly
  2. 2.MRC Anatomical Neuropharmacology UnitOxfordUK
  3. 3.Istituto di Scienze FarmacologicheUniversità degli Studi di SienaSienaItaly

Personalised recommendations