Skip to main content

The Role of Sulphydryl Groups in Efflux of Taurine and Gaba from Cerebral Cortical Cells

  • Chapter
Taurine 2

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 403))

Abstract

A reduction of plasma osmolality due to a fall in Na+ concentration (hyponatraemia) is the disorder of electrolyte homeostasis that is most frequently encountered in clinical medicine32. Hyponatraemia commonly presents as disordered CNS function24. However, ample experimental evidence indicates that brain cells, both in vitro (e. g. cultured preparations) or in vivo, are able to preserve near-normal volumes (fluid contents) when exposed to hyposmotic media. This is accomplished through a reduction of their osmotic potential mediated by loss of inorganic and organic intracellular solutes. The latter comprise mainly straight-chain, aliphatic, non-essential (in most species) amino acids — taurine in particular — and myo-inositol13, 14, 16 and their contribution to the limitation of cell swelling has been quantified in severely hyponatraemic rats31. The role of inorganic ions has been reviewed elsewhere4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aschner, M., Mullaney, K.J., Fehm, M.N., Vitarella, D., Wagoner, D.E. and Kimeiberg, H.K., 1994, The role of sulfhydryl groups in D-aspartate and rubidium release from neonatal rat primary astrocyte cultures. Brain Research 648: 16–23.

    Article  CAS  Google Scholar 

  2. Ballatori, N. and Boyer, J.L., 1992, Taurine transport in skate hepatocytes. II. Volume activation, energy, and sulfhydryl dependence. Am. J. Physiol. 262: G451–G460.

    CAS  Google Scholar 

  3. Cleland, W.W., 1964, Dithiothreitol, a new protective reagent for SH groups. Biochemistry 3: 480–482.

    Article  CAS  Google Scholar 

  4. Cserr, H.F. and Patlak, C.S., 1991, Regulation of brain volume under isosmotic and anisosmotic conditions, in: “Volume and Osmolality Control in Animal Cells”, Gilles, R., Hoffmann, E.K. and Bolis, L. eds., Springer-Verlag, Berlin and Heidelberg, pp. 61–80.

    Google Scholar 

  5. Czech, M.P., 1976, Differential effects of sulfhydryl reagents on activation and deactivation of the fat cell hexose transport systems. J. Biol. Chem. 251: 1164–1170.

    CAS  Google Scholar 

  6. Glick, N.B., 1972, in: “Metabolic Inhibitors, Vol. III”, Hochster, R.M., Kates, M. and Quastel, J.H., eds, Academic Press, New York, pp. 1–45.

    Chapter  Google Scholar 

  7. Hilgier, W., Puka, M. and Albrecht, J., 1992, Characteristics of large neutral amino acid-induced release of preloaded L-glutamine from rat cerebral capillaries in vitro: effects of ammonia, hepatic encephalopathy, and gamma-glutamyl transpeptidase inhibitors. J. Neurosci. Res. 32: 221–226.

    Article  CAS  Google Scholar 

  8. Jackson, P.S. and Strange, K., 1995, Single-channel properties of a volume-sensitive anion conductance: current activation occurs by abrupt switching of closed channels to an open state. J. Gen. Physiol. 105: 643–660.

    Article  CAS  Google Scholar 

  9. Kanner, B.I., 1978, Active transport of γ-aminobutyric acid by membrane vesicles isolated from rat brain. Biochemistry 17: 1207–1211.

    Article  CAS  Google Scholar 

  10. Kleinzeller, A., Booz, G.W., Mills, J.W. and Ziyadeh, EN., 1990, pCMBS-induced swelling of dogfish (Squalus acanthias) rectal gland cells: role of the Na+, K+-ATPase and the cytoskeleton. Biochim. Biophys. Acta 1025:21–31.

    Article  CAS  Google Scholar 

  11. Kunimoto, M., Shibata, K. and Miura, T., 1987, p-Chloromercuribenzoate-induced dissociation of cytoskeletal proteins in red blood cells. Biochim. Biophys. Acta 905: 257–267.

    Article  CAS  Google Scholar 

  12. Lauf, P.K., 1988, Kinetic comparison of ouabain-resistant K:C1 fluxes (K:C1 [Co]transport) stimulated in sheep erythrocytes by membrane thiol oxidation and alkylation. Mol. Cell. Biochem. 80: 97–106.

    Google Scholar 

  13. Law, R.O., 1991, Amino acids as volume-regulatory osmolytes in mammalian cells. Comp. Biochem. Physiol. 99A: 263–277.

    Article  CAS  Google Scholar 

  14. Law, R.O., 1994, Regulation of mammalian brain cell volume. J. Exp. Zool. 268: 90–96.

    Article  CAS  Google Scholar 

  15. Law, R.O., 1994, Taurine efflux and the regulation of cell volume in incubated slices of rat cerebral cortex. Biochim. Biophys. Acta 1221: 21–28.

    Article  CAS  Google Scholar 

  16. Law, R.O. and Burg, M.B., 1991, The role of organic osmolytes in the regulation of mammalian cell volume, in: “Volume and Osmolality Control in Animal Cells”, Gilles, R., Hoffmann, E.K. and Bolis, L., eds., Springer-Verlag, Berlin and Heidelberg, pp. 189–225.

    Google Scholar 

  17. Lohr, J.W. and Grantham, J.J., 1986, Isovolumetric regulation of isolated S2 proximal tubules in anisotonic media. J. Clin. Invest. 78: 1165–1172.

    Article  CAS  Google Scholar 

  18. Martinez, A., Guerra, G. and Pasantes-Morales, H., 1993, Inhibition by sulfhydryl blocking reagents of the volume-sensitive taurine release in cultured astrocytes. J. Neurochem. 61 Suppl.: S47.

    Google Scholar 

  19. Martinez, A., Munoz-Clares, R.A. Guerra, G., Moran, J. and Pasantes-Morales, H., 1994, Sulfhydryl groups essential for the volume-sensitive release of taurine from astrocytes. Neurosci. Lett. 176: 239–242.

    Article  CAS  Google Scholar 

  20. Motais, R., Guizouarn, H. and Garcia-Romeu, F., 1991, Red cell regulation: the pivotal role of ionic strength in controlling swelling-dependent transport systems. Biochim. Biophys. Acta 1975: 169–180.

    Article  Google Scholar 

  21. Mullaney, K.J. Vitarella, D., Albrecht, J., Kimelberg, H.K. and Aschner, M., 1993, Stimulation of aspartate efflux by mercuric chloride from rat primary astrocyte cultures. Dev. Brain Res. 75: 261–268

    Article  CAS  Google Scholar 

  22. Nagelhus, E.A., Lehmann, A. and Ottersen, O.P., 1993, Neuronal-glial exchange of taurine during hypo-osmotic stress: a combined immunocytochemical and biochemical analysis in rat cerebellar cortex. Neuroscience 54: 615–631.

    Article  CAS  Google Scholar 

  23. Pasantes-Morales, H., Moran, J. and Schousboe, A., 1990, Volume-sensitive release of taurine from cultured astrocytes: properties and mechanisms. Glia 3: 427–432.

    Article  CAS  Google Scholar 

  24. Pollock, A.S. and Arieff, A.I., 1980, Abnormalities of cell volume regulation and their functional consequences. Am. J. Physiol. 239: F195–F205.

    CAS  Google Scholar 

  25. Regen, D.M. Schraw, W.P., Tarpley, H.L. and Juliao, S.F., 1981, Effects of thiol reagents on glucose transport in thymocytes. Biochem. Biophys. Acta 644: 62–68.

    Article  CAS  Google Scholar 

  26. Robillard, G.T., Schaaf, J.M. and Teelken, A.W., 1987, Dithiols and monothiols are linked with GABA transport in membrane vesicles of rat brain synaptosomes. FEBS Lett. 224: 391–395.

    Article  CAS  Google Scholar 

  27. Rothstein, A., 1970, Sulfhydryl groups in membrane structure and function. Curr. Topics Membr. Trans. 1: 135–176.

    Article  CAS  Google Scholar 

  28. Sackin, H., 1995, Review of mechanosensitive channels. Ann. Rev. Physiol. 57: 333–353.

    Article  CAS  Google Scholar 

  29. Schousboe, A., Moran, H. and Pasantes-Morales, J., 1990, Potassium-stimulated release of taurine from cultured cerebellar granule neurons is associated with cell swelling. J. Neurosci. Res. 27: 71–77.

    Article  CAS  Google Scholar 

  30. Sokol, P.P., Holohan, D. and Ross, C.R., 1986, Essential disulfide and sulfl, ydryl groups for organic cation transport in renal brush-border membrane membranes. J. Biol Chem. 261: 3282–3287.

    CAS  Google Scholar 

  31. Sterns, R.H., Baer, J., Ebersol, S., Thomas, D., Lohr, J.W. and Kamm, D.E., 1993, Organic osmolytes in acute hyponatraemia. Am. J. Physiol. 264: F833–F836.

    CAS  Google Scholar 

  32. Verbalis, J.G., 1993, Hyponatraemia: epidemiology, pathophysiology, and therapy. Curr. Opinion Nephrol. Hypertens. 2: 636–652.

    Article  CAS  Google Scholar 

  33. Ziyadeh, F.N., Feldman, G.M., Booz, G.W. and Kleinzeller, A., 1988, Taurine and cell volume maintenance in the shark rectal gland: cellular fluxes and kinetics. Biochim. Biophys. Acta 943: 43–52.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Upton, E.L., Law, R.O. (1996). The Role of Sulphydryl Groups in Efflux of Taurine and Gaba from Cerebral Cortical Cells. In: Huxtable, R.J., Azuma, J., Kuriyama, K., Nakagawa, M., Baba, A. (eds) Taurine 2. Advances in Experimental Medicine and Biology, vol 403. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0182-8_44

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0182-8_44

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0184-2

  • Online ISBN: 978-1-4899-0182-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics