Taurine 2 pp 297-304 | Cite as

Effect of Taurine on Angiotensin II-Induced Expression of Immediate Early Response Genes in Primary Cultured Neonatal Rat Heart Cells

  • Kyoko Takahashi
  • Hitoshi Hashimoto
  • Akemichi Baba
  • Stephen W. Schaffer
  • Junichi Azuma
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 403)


Taurine has been used successfully to treat patients with congestive heart failure2. Recently, it has been established that one of the important factors contributing to the development of cardiac hypertrophy and heart failure is angiotensin II3, 9, 14. Angiotensin II is a peptide hormone that plays a major role in the regulation of fluid balance, blood pressure and cardiac function. Its direct cardiac effects include modulation of Na+, H+ and Ca2+ transport, increasing heart rate and mechanical function, stimulation of protein synthesis and enhancing uptake and utilization of glucose3, 9.


Cardiac Myocytes Cardiac Cell Early Response Gene Beating Rate Taurine Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allo S. N. Carl L.L. and Morgan H.E. 1992, Acceleration of growth of cultured cardiomyocytes and translocation of protein kinase C. Am. J. Physiol. 263:C319–C325.Google Scholar
  2. 2.
    Azuma J., Sawamura A., Awata N., Hasegawa H., Ogura K., Harada H., Ohta H., Yamauchi, K., Kishimoto S., Yamagami T., Ueda E. and Ishiyama T. 1983, Double-blind randomized crossover trial of taurine in congestive heart failure. Cum Therap. Res., 34:543–557.Google Scholar
  3. 3.
    Baker K.M., Booz G.W. and Dostal D.E. 1992, Cardiac actions of angiotensin II: Role of an intracardiac renin-angiotensin system. Ann. Rev. Physiol, 54:227–241.CrossRefGoogle Scholar
  4. 4.
    Chomczynski P. and Sacchi N. 1987, Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction, Anal. Biochem., 162:156–159.CrossRefGoogle Scholar
  5. 5.
    Epand R.M. 1990, Relationship of phospholipid hexagonal phases to biological phenomena. Biochem. Cell. Biol., 68:17–23.CrossRefGoogle Scholar
  6. 6.
    Franconi F., Failli P., Bennardini F., Matucci R., Fazzini A., Stendardi I. and Giotti A. 1989, Taurine modulation of inotropism in guinea pig heart, in: “Taurine and the Heart”, Iwata, H., Lombardini, J.B. and Segawa, T. eds., Kluwer Academic Publishers, Boston, Dordrecht & London, pp. 21–30.CrossRefGoogle Scholar
  7. 7.
    Goshima K. and Tonomura Y. 1969, Synchronized beating of embryonic mouse myocardial cells mediated by FL cells in monolayer culture. Exp.Cell.Res. 56:387–392.CrossRefGoogle Scholar
  8. 8.
    Li Y-P and Lombardini J.B. 1991, Taurine inhibits protein kinase C-catalyzed phosphorylation of specific protein in a rat cortical P2 fraction. J. Neurochem. 56:1747–1753.CrossRefGoogle Scholar
  9. 9.
    Lindpainter K. and Ganten D. 1991, The cardiac renin-angiotensin system. Circ Res., 68:905–921.CrossRefGoogle Scholar
  10. 10.
    Lombardini J.B. 1992, Effects of taurine on protein phosphorylation in mammalian tissues, in: “Taurine: Nutritional Value and Mechanism of Action”, Lombardini, J.B., Schaffer, S.W. and Azuma, J. eds. Plenum Press, New York, pp. 309–318.Google Scholar
  11. 11.
    Maturo J. and Kulakowski E.C. 1987, Insulin-like activity of taurine, in: “The Biology of Taurine”, Huxtable, R.J., Franconi F. and Giotti, A. eds., Plenum Press, New York, pp. 217–226.CrossRefGoogle Scholar
  12. 12.
    Meinkoth J., and Carmichael G.G. 1984, Hybridization of nucleic acids immobilized on solid supports. Anal. Chem. 138:267–284.Google Scholar
  13. 13.
    Polinger I.S. 1970, Separation of cell types in embryonic heart cell cultures. Exp. Cell Res., 63:78–82.CrossRefGoogle Scholar
  14. 14.
    Sadoshima J. and Izumo S. 1993, Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Circ. Res., 73:413–423.CrossRefGoogle Scholar
  15. 15.
    Sadoshima J. and Izumo S. 1993, Signal transduction pathways of angiotensin II-induced c-fos gene expression in cardiac myocytes in vitro. Circ. Res., 73:424–438.CrossRefGoogle Scholar
  16. 16.
    Sadoshima J. and Izumo S. 1993, Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. The EMBO J. 12:1681–1692.Google Scholar
  17. 17.
    Sadoshima J., Jahn L., Takahashi T., Kulik T.J. and Izumo S. 1992, Molecular characterization of the stretch-induced adaptation of cultured cardiac cells. J. Biol. Chem. 267:10551–10560.Google Scholar
  18. 18.
    Schaffer S.W., Azuma J. and Madura J.D. 1995, Mechanisms underlying taurine-mediated alterations in membrane function. Amino Acids 8:231–246.CrossRefGoogle Scholar
  19. 19.
    Takihara K., Azuma J., Awata N., Ohta H., Hamagachi T., Sawamura A., Tanaka Y., Kishimoto S. and Sperelakis N. 1986, Beneficial effect of taurine in rabbits with chronic congestive heart failure. Am. Heart J. 112:1278–1284.CrossRefGoogle Scholar
  20. 20.
    Takahashi K., Azuma J., Awata N., Sawamura A., Kishimoto S., Yamagami T., Kishi T., Harada H. and Schaffer S.W. 1988, Protective effect of taurine on the irregular beating pattern of cultured myocardial cells induced by high and low extracellular calcium ion. J. Mol. Cell. Cardiol. 20:397–403.CrossRefGoogle Scholar
  21. 21.
    Takahashi K., Harada H., Schaffer S.W. and Azuma J. 1992, Effect of taurine on intracellular calcium dynamics of cultured myocardial cells during the calcium paradox, in: “Taurine; Nutritional Value and Mechanisms”, Lombardini, J.B., Schaffer, S.W. and Azuma, J. eds., Plenum Press, New York, pp. 153–161.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Kyoko Takahashi
    • 1
  • Hitoshi Hashimoto
    • 2
  • Akemichi Baba
    • 2
  • Stephen W. Schaffer
    • 3
  • Junichi Azuma
    • 1
  1. 1.Department of Clinical Evaluation of Medicines and TherapeuticsOsaka University, Faculty of Pharmaceutical SciencesOsakaJapan
  2. 2.Department of PharmacologyOsaka University, Faculty of Pharmaceutical SciencesOsakaJapan
  3. 3.Department of PharmacologyUniversity of South Alabama, School of MedicineMobileUSA

Personalised recommendations