Ether Lipid Metabolism, GPI Anchor Biosynthesis, and Signal Transduction are Putative Targets for Anti-Leishmanial Alkyl Phospholipid Analogues

  • H. Lux
  • D. T. Hart
  • P. J. Parker
  • T. Klenner
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 416)


Leishmaniasis is a tropical and subtropical disease with up to 12 million sufferers and is the cause of considerable morbidity and mortality (WHO-TDR 1990). The causative agent is Leishmania a genus of parasitic protozoa and member of the Trypanosomatidae. Leishmania has a digenic life cycle and exists as a flagellated and motile promastigote stage in the digestive tract of the sandfly vector and as an aflagellated and non-motile intracellular amastigote stage, which survive and multiply in macrophages of the vertebrate host.


Visceral Leishmaniasis Ether Lipid Leishmania Donovani Leishmanicidal Activity Ether Phospholipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achterberg, V. and Gercken, G. (1987). Cytotoxicity of ester and ether lysophospholipids on Leishmania donovani promastigotes. Molecular and Biochemical Parasitology, 23, 117–122.PubMedCrossRefGoogle Scholar
  2. Akimoto, A., Mizuno, K., Osada, S., Hirai, S., Tanuma, S., Suzuki, K. and Shigeo, O. (1994). A new member of the third class in the protein kinase C family, PKC 7,,, expressed dominantly in an undifferentiated mouse embryonal carcinoma cell line and also in many tissues and cells. The Journal of Biological Chemistry, 269, 12677–12683.PubMedGoogle Scholar
  3. Arnold, B., Reuter, R. and Weltzien, H. U. (1978). Distribution and metabolism of synthetic alkyl analogues of lysophosphatidylcholine in mice. Biochemica and Biophysica Acta, 530, 47–55CrossRefGoogle Scholar
  4. Beach, D. H., Holz, G. G. and Anekwe, G. E. (1979). Lipids of Leishmania promastigotes. Journal of Parasitology, 65, 203–216CrossRefGoogle Scholar
  5. Berdel, W. E., Fink, U. and Rastetter, J. (1987). Clinical phase I pilot study of the alkyl lysophospholipid derivative ET-18-OCH3. Lipids, 22, 967–969PubMedCrossRefGoogle Scholar
  6. Chida, K., Sagara, H., Suzuki, Y., Murakami, A., Osada, S., Ohno, S., Hirosawa, K. and Kuroki T. (1994). The ri isoform of protein kinase C is localized on rough endoplasmatic reticulum. Molecular and Cellular Biology, 14, 3782–3790.PubMedGoogle Scholar
  7. Croft, S. L., Neal, R. A., Pendergast, W. and Chan, J. H. (1987). The activity of alkyl phosphorylcholines and related derivatives against Leishmania donovani. Biochemical Pharmacology, 36, 2633–2636.CrossRefGoogle Scholar
  8. Croft, S. L., Neal, R. A., Thornton, E. A. and Herrmann, D. B. J. (1993). Antileishmanial activity of the ether phospholipid ilmofosine. Transactions of the Royal Society of Tropical Medcine and Hygiene, 87, 217–219.CrossRefGoogle Scholar
  9. Das, S., Saha, A. K., Mukhopadhyay, N. K. and Glew, R. H. (1986). A cyclic nucleotide-independent protein kinase in Leishmania donovani. Biochem. J., 240, 641–649.Google Scholar
  10. Descoteaux, A., Turco, S. J., Sacks, D. L. and Matlashewski, G. (1991). Leishmania donovani lipophosphogycan selectively inhibits signal transduction in macrophages. Journal of Immunology, 146, 2747–2753.Google Scholar
  11. Grunicke, H. H. and Uberall, F. (1992). Protein kinase C modulation. Seminars in Cancer Biology 3, 351–360.PubMedGoogle Scholar
  12. Hart, D. T., Langridge, A., Barlow, D. and Sutton B. J. (1989). Antiparasitic drug design. Parasitology Today, 5, 117–120.PubMedCrossRefGoogle Scholar
  13. Hart, D. T. and Opperdoes, F. R. (1984) The occurrence of glycosomes (Microbodies) in the promastigote stage of four major Leishmnaia species. Molecular and Biochemical Parasitology, 13, 159–172.Google Scholar
  14. Hart, D. T., Bhatti, M., Lux, H. and Klenner, T. (1995). Ether lipid analogues: A novel class of anti-leishmanial drug. Trans. Roy. Soc. Trop. Med. and Hyg. (in press)Google Scholar
  15. Hermoso, T., Fishelson, Z., Becker, S. L. Hirschberg, K. and Jaffe, C. L. (1991). Leishmanial protein kinases phosphorylate components of the complement system. EMBO, 10, 4061–4067.Google Scholar
  16. Herrman, H. and Gerken, G. (1980). Incorporation of [1–14C]octadecanol into the lipids of Leishmania donovani. Lipids, 15, 179–186.CrossRefGoogle Scholar
  17. Hilgard, P., Klenner, T., Stekar, J. and Unger C. (1993). Alkylphosphocholines: a new class of membraneactive anticancer agents. Cancer Chemotherapy and Pharmacology. 32, 90–95PubMedCrossRefGoogle Scholar
  18. Hilgard, R. and Klenner, T. (1994). Experimental pharmacology of Miltex and its constituents. Drugs of Today, 30, 13–20Google Scholar
  19. Ilg, T., Etges, R. and Overath, P. McConville, M. J., Thomas-Oates, J., Thomas, J., Homans, S. W. and Ferguson, M. A. J.(1991). Structure of Leishmania mexicana lipophosphoglycan. Journal of Biological Chemistry, 267, 6834–6810Google Scholar
  20. Kuhlencord, A.; Maniera, T.; Eibel, H. and Unger, C. (1992). Hexadecylphosphocholine: Oral treatment of visceral Leishmaniasis in mice. Antimicrobial Agents and Chemotherapy, 36, 1630–1634.PubMedCrossRefGoogle Scholar
  21. Lohmeyer, L. and Bittman R. (1994). Antitumor ether lipids and alkylphosphocholines, Drugs of the Future, 19, 1021–1037.Google Scholar
  22. Mahoney, C. W. and Huang, K.-P. (1994). Molecular and catalytic properties of protein kinase C. In Protein kinase C, edited by J. F. Kuo, Oxford University Press.Google Scholar
  23. Marais, R. M. and Parker, P. J. (1989). Purification and characterisation of bovine brain protein kinase C isotypes es, ß and y. European Journal of Biochemistry, 182, 129–137.CrossRefGoogle Scholar
  24. McConville, M. J. and Blackwell J. M. (1991). Developmental changes in the glycosylated phosphatidylinositols of Leishmania donovani. Journal of Biological Chemistry, 266, 15170–15179Google Scholar
  25. McConville, M. J. and Ferguson, M. A. J. (1993). The structure, biosynthesis and funktion of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochemical Journal, 294, 305–324.PubMedGoogle Scholar
  26. Ngwenya, B., Fiavey, N. R. and Mogashoa, M. M. (1991). Activation of peritoneal macrophages by orally administered ether analoges of lysophospholipids. P. S. E. B. M., 197, 91–97.Google Scholar
  27. Nishizuka, Y. (1992). Intracellular Signaling by hydrolysis of phospholipids and activation of protein kinase C. Science, 258, 607–614.PubMedCrossRefGoogle Scholar
  28. Olivier, A. R. and Parker P. J. (1991). Expression and characterization of protein kinase C-S. European Journal of Biochemistry, 200, 805–810.PubMedCrossRefGoogle Scholar
  29. Orlandi, P. A. Jr. and Turco, S. J. (1987). Structure of the lipid moiety of the Leishmania donovani lipophosphoglycan. Journal of Biological Chemistry, 262, 10384–10391PubMedGoogle Scholar
  30. Osada, S., Mizuno, K., Saido, T. C., Suzuki, K., Kuroki, T. and Ohno, S. (1992). A new member of the protein kinase C family, nPKCO, predominantly expressed in skeletal muscle. Molecular and Cellular Biology, 12, 3930–3938PubMedGoogle Scholar
  31. Proudfoot, L., O’ Donnell, C. A. and Liew, F. Y. (1995). Glycoinositolphospholipids of Leishmania major inhibit nitric oxide synthesis and reduce leishmanicidal activity in murine macrophages. Eur. J. Immunol., 25, 745–750.PubMedCrossRefGoogle Scholar
  32. Rigley and Hicks (1991). In Cytokines: A practical approach, edited by Balkwill, F. R., Oxford University Press.Google Scholar
  33. Schaap, D., Parker, P.J., Bristol, A., Kriz, R. and Knopf J. (1989). Unique substrate specificity and regulatory properties of PKC- e: a rationale for diversity. FEBS Letters, 243, 351–357.PubMedCrossRefGoogle Scholar
  34. Schneider, P., Ferguson, M. A. J., McConville, M.J., Mehlert, A., Homans, S. W. and Bordier, C (1990). Structure of the glycosyl-phosphatidylinositol membrane anchor of the Leishmania major promastigote surface protease. Journal of Biological Chemistry, 265, 16955–16964PubMedGoogle Scholar
  35. Schreiber, B. M., Layne, M. D. and Modest, E. J. (1994). Superoxide production by macrophages stimulated in vivo with synthetic ether lipids. Lipids, 29, 237–242.PubMedCrossRefGoogle Scholar
  36. Steiger, R. F., Opperdoes, F. R. and Bontemps, J. (1980). Subcellular fractionation of Trypanosoma brucei bloodstream forms with special reference to hydrolases. European Journal of Biochemistry, 105, 163–175PubMedCrossRefGoogle Scholar
  37. Stobart,A. K. and Stymne S. (1990). Triacylglycerol biosynthesis. Methods in Plant Biochemistry, 4, 19–46.Google Scholar
  38. Ways, D. K., Cook, P. P., Webster, C. and Parker P. J. (1992). Effect of Phorbol ester on PKC-. The Journal of Biological Chemistry, 267, 4799–4805.PubMedGoogle Scholar
  39. WHO—TDR (1990). Leishmaniasis. In Tropical Diseases 1990, World Health Organisation, Geneva, Switzerland.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • H. Lux
    • 1
  • D. T. Hart
    • 1
  • P. J. Parker
    • 2
  • T. Klenner
    • 3
  1. 1.King’s College LondonUK
  2. 2.Imperial Cancer Research FundLondonUK
  3. 3.ASTA Medica AGFrankfurt am MainGermany

Personalised recommendations