Transcriptional Regulation of Platelet-Activating Factor Receptor Gene Expression in Leukocytes
Abstract
Platelet-activating factor (PAF) is a potent inflammatory mediator implicated in a variety of pathophysiological states1–2. PAF exerts a wide spectrum of biological activities via binding to specific receptors present on the surface of many types of cells, including platelets, neutrophils, monocytes, eosinophils, lymphocytes, vascular endothelial cells and smooth muscle cells. A PAF receptor cDNA was first cloned from guinea pig lung by Honda et.al.3 Subsequently, two cDNAs for. human PAF receptor were cloned from leukocytes (transcript I)4–6 and heart (transcript II)7, respectively. It was shown that both human transcripts contain identical coding region, but different in the 5′-noncoding sequence, indicating that two distinct promoters are involved in the transcriptional regulation of PAF receptor gene expression in various human tissues and cells7. Nevertheless, leukocytes have been shown to express exclusively the transcript I of the PAF receptor7. In attempt to understand the molecular mechanism that directs the expression of the gene encoding the PAF receptorin leukocytes, the 5′-flanking region of the human PAF receptor for transcript I was isolated and its promoter activity was characterized in myeloid and lymphoid cell lines.
Keywords
Transcription Start Site U937 Cell Nuclear Extract Receptor Gene Expression Lymphoid Cell LinePreview
Unable to display preview. Download preview PDF.
References
- 1.Braquet, P., Touqui, L., Touqui, T.Y., and Vargaftig, B.B. (1987) Pharmacol. Rev. 39, 97–145PubMedGoogle Scholar
- 2.Venable, M.E., Zimmerman, G.A., McIntyre, T.M., and Prescott, S.M. (1993) J. Lipid Res. 34, 691–702PubMedGoogle Scholar
- 3.Honda, Z-I, Nakamura, M., Miki, I., Minami, M., Watanabe, T., Seyana, Y., Okado, H., Toh, H., Ito, K. Miyamota, T., and Shimizu, T. (1991) Nature 349, 342–346PubMedCrossRefGoogle Scholar
- 4.Nakamura, M., Honda, Z., Izumi, T., Sakanaka, C., Mutoh, H., Minami, M., Bito, H., Seyama, Y., Matsumoto, T., Noma, M., and Shimizu, T. (1991) J. Biol. Chem. 266, 20400–20405PubMedGoogle Scholar
- 5.Ye, R.D., Prossnitz, E.R., Zou, A., and Cochrane, C.G. (1991) Biochem. Biophys. Res. Commun. 180, 105–111PubMedCrossRefGoogle Scholar
- 6.Kunz, D., Gerard, N.P., and Gerard, C. (1992) J. Biol. Chem. 265, 4261–4265Google Scholar
- 7.Mutoh, H., Bito, H., Minami, M., Nakamura, M., Honda, Z., Izumi, T., Nakata, R., Kurachi, Y., Terano, A., and Shimizu, T. (1993) FEBS Lett. 322, 129–134PubMedCrossRefGoogle Scholar
- 8.Pang, J.-H. S., Hung, R.-Y., Wu, C.-J., Fang, Y.-Y., and Chau, L.-Y. (1995) J. Biol. Chem. 270, 14123–14129PubMedCrossRefGoogle Scholar
- 9.Smale, S.T., and Baltimore, D. (1989) CELL 57, 103–113PubMedCrossRefGoogle Scholar
- 10.Smale, S.T., Schmidt, M.C., Berk, A.J., and Baltimore, D. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 4509–4513PubMedCrossRefGoogle Scholar
- 11.O’Shea-Greenfield, A.O., and Smale, S.T. (1992) J. Biol. Chem. 267, 1391–1402PubMedGoogle Scholar
- 12.Javahery, R., Khachi, A., Lo, K., Zenzie-Gregory, B., and Smale, S.T. (1994) Mol. Cell. Biol. 14, 116–127PubMedGoogle Scholar
- 13.Du, H., Roy, A.L., and Roeder, R.G. (1993) EMBO J. 12, 501–511PubMedGoogle Scholar
- 14.Briggs, M.R., Kadonaga, J.T., Bell, S.P., and Tjian, R. (1986) Science 234, 47–52PubMedCrossRefGoogle Scholar
- 15.Shapiro, L.H., Ashmun, R.A., Roberts, W.M., and Look, A.T. (1991) J. Biol. Chem. 266, 11999–12007PubMedGoogle Scholar
- 16.Gomolin, H.I.,Yamaguchi, Y., Paulpillai, A.V., Dvorak, L.A., Ackerman, S.J., and Tenen, D.G. (1993) Blood 82, 1868–1874PubMedGoogle Scholar
- 17.Shelley, C.S., Farokhzad, O.C., and Arnaout, M.A. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 5364–5368CrossRefGoogle Scholar