Free Radical-Induced Oxidation of Glycerophosphocholine Lipids and Formation of Biologically Active Products

  • Robert C. Murphy
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 416)


Lipid mediators are a diverse family of biologically active compounds derived from phospholipids and are thought to play important roles both in physiological processes as well as pathophysiologic events. Perhaps the best studied class of lipid mediators are those derived from arachidonic acid, termed eicosanoids. Several enzymatic systems are known to be involved in their formation including prostaglandin H synthase which catalyzes the formation of cyclic endoperoxides, the direct precursor of prostaglandins, thromboxane, and prostacyclinl. Leukotrienes are formed from arachidonic acid by the enzyme 5-lipoxygenase which initially introduces oxygen into the arachidonic acid backbone2. Other biologically active eicosanoids are formed by 15-lipoxygenase3, 12-lipoxygenase4, and cytochrome P-4505. These enzymes use nonesterified arachidonic acid as substrate. Another important class of lipid mediator is platelet-activating factor which is derived from ether phospholipids and has acetate at the sn-2 position. The formation of the precursor lyso glycerophosphocholine as well as the subsequent acetylation process are enzymatically mediated’.


Arachidonic Acid Lipid Mediator Carbon Centered Radical Ether Phospholipid Washed Rabbit Platelets26 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smith, W. L. (1992)Am. J. Physiol. 263, F181 - F191Google Scholar
  2. 2.
    Ford-Hutchinson, A. W., Gresser, M., and Young, R. N. (1994) Annu. Rev. Biochem. 63, 383–417PubMedCrossRefGoogle Scholar
  3. 3.
    Sigal, E. (1991) Am. J. Physiol. 260, L13 - L28PubMedGoogle Scholar
  4. 4.
    Yamamoto, S. (1992) Biochim. Biophys. Acta 1128, 117–131PubMedCrossRefGoogle Scholar
  5. 5.
    Fitzpatrick, F. A. and Murphy, R. C. (1989) Pharmacol. Rev. 40, 229–241Google Scholar
  6. 6.
    Prescott, S. M., Zimmerman, G. A., and McIntyre, T. M. (1990) J. Biol. Chem. 265, 17381–17384Google Scholar
  7. 7.
    Narumiya, S. (1995) Adv. Prostaglandin, Thromboxane, Leukotriene Res. 23, 17Google Scholar
  8. 8.
    Nakamura, M., Honda, Z, Izmi, T., Sakanaka, C., Mutoh, H., Minami, M., Bito, Y., Seyama, Y., Matsumoto, T., Noma, M., and Shimizu, T. (1991) J. Biol. Chem. 266, 20400PubMedGoogle Scholar
  9. 9.
    Summers, J. B. and Albert, D. H. (1995) Adv. Pharmacol. 32, 67–168PubMedCrossRefGoogle Scholar
  10. Pryor, W. A. (1986)Annu. Rev. Physiol. 48, 657–667Google Scholar
  11. 11.
    Halliwell, B. and Gutteridge, J. M. C. (1989) Free Radicals in Biology and Medicine Oxford University Press, Oxford, UK.Google Scholar
  12. 12.
    Gardner, H. W. (1989) Free Radical. Biol. Med. 7, 65–75CrossRefGoogle Scholar
  13. 13.
    Koppenol, W. H. (1990) FEBS Lett. 264, 165–167PubMedCrossRefGoogle Scholar
  14. 14.
    Wagner, B. A., Buettner, G. R., and Burns, C. P. (1994) Biochem. 33, 4449–4453CrossRefGoogle Scholar
  15. 15.
    Wendelborn, D. F., Seibert, K., and Roberts, L. J., II. (1988) Proc. Natl. Acad. Sci. USA 85, 304–308PubMedCrossRefGoogle Scholar
  16. 16.
    Morrow, J. D., Hill, K. E., Burk, R. F., Nammour, T. M., Badr, K. F., and Roberts, L. J., II (1990) Proc. Natl. Acad. Sci. USA 87, 9383–9387PubMedCrossRefGoogle Scholar
  17. 17.
    Morrow, J. D. and Roberts L.J., II (1991) Free Radical. Biol. Med. 10, 195–200CrossRefGoogle Scholar
  18. 18.
    Morrow, J. D., Minton, T. A., and Roberts, L. J., II (1992) Prostaglandins 44, 155–163PubMedGoogle Scholar
  19. 19.
    Takahashi, K., Nammour, T. M., Fukunaga, M., Ebert, J., Morrow, J. D., Roberts, L. J., II, Hoover, R. L., and Badr, K. F. (1992)J. Clin. Invest. 29, 136–141Google Scholar
  20. 20.
    Harrison, K.A. and Murphy, R.C. (1995)J. Biol. Chem. 270, 17273–17278Google Scholar
  21. 21.
    Murphy, R.C. and Harrison, K.A. Biological Mass Spectrometry Humana Press, Totowa, NJ, in pressGoogle Scholar
  22. 22.
    Tokumura, A. (1995) Prog. Lipid Res. 34, 151–184.PubMedCrossRefGoogle Scholar
  23. 23.
    Lehr, H. A., Seemüller, J., Huber, C., Menger, M. D., and Messmer, K. (1993) Arterioscler. Thromb. 13, 1013–1018PubMedCrossRefGoogle Scholar
  24. 24.
    Yoshida, J., Tokumura, A., Fukuzawa, K., Terao, M., Takauchi, K., and Tsukatani, H. (1986) J. Pharm. Pharmacol. 38, 878–882.PubMedCrossRefGoogle Scholar
  25. 25.
    Smiley, R. L., Stremler, K. E., Prescott, S. M., Zimmerman, G. A., and McIntyre, T. M. (1991) J. Biol. Chem. 266, 11104–11110.PubMedGoogle Scholar
  26. 26.
    Tanaka, T., Imori, M., Tsukatani, H., and Tokumura, A. (1994) Biochim. Biophys. Acta 1210, 202–208.PubMedCrossRefGoogle Scholar
  27. 27.
    Jackson, W. T., Boyd, R. J. Froelich, L. L., Mallett, B. E., and Gapinski, D. M. (1992) J. Pharmacol. Exp. Ther. 263, 1009–1014PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Robert C. Murphy
    • 1
  1. 1.Division of Basic SciencesNational Jewish Center for Immunology and Respiratory MedicineDenverUSA

Personalised recommendations