Skip to main content

The Enterococcus hirae Copper ATPases

Structure, Function, and Regulation

  • Chapter
Therapeutic Uses of Trace Elements
  • 207 Accesses

Abstract

Copper is an essential element by functioning as a cofactor in many redox enzymes such as cytochrome c oxidase, lysyl oxidase, ascorbate oxidase, dopamine β-hydroxylase, tyrosinases and superoxide dismutase. But copper is also very toxic to both eukaryotic and prokaryotic cells: it can initiate the formation of cell damaging radicals which oxidize proteins, DNA and biological membranes. Thus, homeostatic mechanisms have evolved to regulate intracellular copper concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Cervantes and F. Gutierrez-Corona, FEMS Microbiol. Rev. 14, 121–138 (1994).

    Article  CAS  Google Scholar 

  2. D. A. Cooksey, FEMS Microbiol. Rev. 14, 381–386 (1994).

    Article  CAS  Google Scholar 

  3. A. Odermatt, H. Suter, R. Krapfand M. Solioz, Ann. N. Y. Acad. Sci. 671, 484–486 (1992).

    Article  CAS  Google Scholar 

  4. C. Vulpe, B. Levinson, S. Whitney, S. Packman and J. Gitschier, Nature Genet. 3, 7–13 (1993).

    Article  CAS  Google Scholar 

  5. J. F. B. Mercer, J. Livingston, B. Hall, J. A. Paynter, C. Begy, S. Chandrasekharappa, P. Lockhart, A. Grimes, M. Bhave, D. Siemieniak and T. W. Glover, Nature Genet. 3, 20–25 (1993).

    Article  CAS  Google Scholar 

  6. R. E. Tanzi, K. Petrukhin, I. Chernov, J. L. Pellequer, W. Wasco, B. Ross, D. M. Romano, E. Parano, L. Pavone and L. M. Brzustowicz, Nature Genet. 5, 344–350 (1993).

    Article  CAS  Google Scholar 

  7. P. C. Bull, G. R. Thomas, J. M. Rommens, J. R. Forbes and D. W. Cox, Nature Genet. 5, 327–337 (1993).

    Article  CAS  Google Scholar 

  8. M. R. Rad, L. Kirchrath and C. P. Hollenberg, Yeast 10, 1217–1225 (1994).

    Article  CAS  Google Scholar 

  9. D. Fu, T. J. Beeler and T. M. Dunn, Yeast 11, 283–292 (1995).

    Article  CAS  Google Scholar 

  10. C. Trenor, III, W. Lin and N. C. Andrews, Biochem. Biophys. Res. Commun. 205, 1644–1650 (1994).

    Article  CAS  Google Scholar 

  11. L. T. Phung, G. Ajlani and R. Haselkorn, Proc. Natl. Acad. Sci. U. S. A. 91, 9651–9654 (1994).

    Article  CAS  Google Scholar 

  12. K. Kanamaru, S. Kashiwagi and T. Mizuno, Mol. Microbiol. 13, 369–377 (1994).

    Article  CAS  Google Scholar 

  13. Z. Ge, K. Hiratsuka and D. E. Taylor, Molec. Microbiol. 15, 97–106 (1995).

    Article  CAS  Google Scholar 

  14. G. Nucifora, L. Chu, T. K. Misra and S. Silver, Proc. Natl. Acad. Sci. U. S. A. 86, 3544–3548 (1989).

    Article  CAS  Google Scholar 

  15. M. Lebrun, A. Audurier and P. Cossart, J. Bacteriol. 176, 3049–3061 (1994).

    CAS  Google Scholar 

  16. M. Lebrun, A. Audurier and P. Cossart, J. Bacteriol. 176, 3040–3048 (1994).

    CAS  Google Scholar 

  17. A. Odermatt, R. Krapf and M. Solioz, Biochem. Biophys. Res. Commun. 202, 44–48 (1994).

    Article  CAS  Google Scholar 

  18. A. Odermatt and M. Solioz, J. Biol. Chem. 270, 4349–4354 (1995).

    Article  CAS  Google Scholar 

  19. T. Himeno, T. Imanaka and S. Aiba, J. Bacteriol. 168, 1128–1132 (1986).

    CAS  Google Scholar 

  20. V. Wittman and H. C. Wong, J. Bacteriol. 170, 3206–3212 (1988).

    CAS  Google Scholar 

  21. G. B. Koudelka, S. C. Harrison and M. Ptashne, Nature 326, 886–888 (1987).

    Article  CAS  Google Scholar 

  22. J. E. Anderson, M. Ptashne and S. C. Harrison, Nature 326, 846–852 (1987).

    Article  CAS  Google Scholar 

  23. A. Odermatt, H. Suter, R. Krapf and M. Solioz, J. Biol Chem. 268, 12775–12779 (1993).

    CAS  Google Scholar 

  24. M. Solioz and A. Odermatt, J. Biol. Chem. 270, 9217–9221 (1995).

    Article  CAS  Google Scholar 

  25. P. Lanzetta, L. Alvarez, J.P. Reinach, and O. Candia, Anal. Biochem. 100, 95–97 (1979).

    Article  CAS  Google Scholar 

  26. H.-J. Apell and M. Solioz, Biochim. Biophys. Acta, 1017, 221–228 (1990).

    Article  CAS  Google Scholar 

  27. J. Chelly, Z. Turner, T. Tonnesen, A. Petterson, Y. Ishikawa Brush, N. Tommerup, N. Horn and A. P. Monaco, Nature Genet. 3, 14–19 (1993).

    Article  CAS  Google Scholar 

  28. P. L. Pedersen and E. Carafoli, Trends Biochem. Sci. 12, 186–189 (1987).

    Article  CAS  Google Scholar 

  29. M. M. Bradford, Anal. Biochem. 72, 24S–254 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Duda, P., Strausak, D., Solioz, M. (1996). The Enterococcus hirae Copper ATPases. In: Nève, J., Chappuis, P., Lamand, M. (eds) Therapeutic Uses of Trace Elements. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0167-5_73

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0167-5_73

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0169-9

  • Online ISBN: 978-1-4899-0167-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics