Antioxidant Micronutrient Status during Oncological Treatment in Children with Cancer

  • D. J.-M. Malvy
  • J. Arnaud
  • B. Burtschy
  • D. Sommelet
  • G. Leverger
  • L. Dostalova
  • O. Amédée-Manesme


Cancer is frequently associated with a combination of metabolic abnormalities leading to a complex, abnormal biochemical state in the tumor-bearing host, including alterations in vitamin and mineral concentrations. Moreover, the tumoricidal action of several anti-cancer drugs is known to be mediated by a free radical dependent mechanism (1). It has been suggested that lipid peroxidation is one of the main causes of irradiation damage. Conditioning regimens for cancer treatments in children often consist of high-dose chemotherapy, possibly combined with surgery or irradiation. These regimens may approach tolerance limit for several tissues. Vitamins and other micronutrients with antioxidant properties (2) have not been clearly assessed during childhood malignancies. We therefore investigated whether abnormal breakdown of antioxidants such as beta-carotene, alpha-tocopherol, zinc and selenium occurs at the time of diagnosis and might follow the conditioning therapy in certain groups of children with cancer. The study was conducted in France as a satellite investigation of a large multicenter case-control survey designed to document the relationship between serum micronutrient values and childhood malignancy (3). We therefore measured retinol (vitamin A), beta-carotene, alpha-tocopherol (vitamin E), cholesterol, zinc, selenium, and related proteins in serum collected from 1986 to 1989 from 170 children aged 1–16 years with newly diagnosed cancer, and from 632 healthy controls who were cancer-free. In the patient group, sample processing was performed twice, once at diagnosis and before treatment (month-0), and once 6 months after initiation of treatment (month-6).


Tumoricidal Action Serum Retinol Childhood Malignancy Serum Retinol Concentration Patient Undergo Cancer Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Sangeetha, U.N. Das, R. Koratkar and P. Suryaprabha, Free Rad. Biol. Med. 8, 15–19 (1990).CrossRefGoogle Scholar
  2. 2.
    E. Seifter, J. Mendecki, S. Holtman, J.D. Kanofsky, E. Friedenthal, L. Davis and J. Weinzweig, Pharmac. Ther. 39, 357–365 (1988).CrossRefGoogle Scholar
  3. 3.
    D.J.M. Malvy, B. Burtschy, J. Arnaud, D. Sommelet, G. Leverger, L. Dostalova, J. Drucker and O. Amédée-Manesme, Int. J. Epidemiol. 22, 761–771 (1993).CrossRefGoogle Scholar
  4. 4.
    WHO, International Classification of Diseases for Oncology (ICD-O), WHO, Geneva, (1980).Google Scholar
  5. 5.
    D.J.M. Malvy, B. Burtschy, L. Dostalova and O. Amédée-Manesme, Int. J. Epidemiol. 22, 137–246 (1993).CrossRefGoogle Scholar
  6. 6.
    D.J.M. Malvy, J.D. Povéda, M. Debruyne, B. Montagnon, C. Herbert and O. Amédée-Manesme, Clin. Chem. 38, 394–399(1992).Google Scholar
  7. 7.
    D.J.M. Malvy, J. Arnaud, B. Burtschy, M.J. Richard, A. Favier, D. Houot and O. Amédée-Manesme, Int. J. Epidemiol. 9, 155–161 (1993).Google Scholar
  8. 8.
    D.J.M. Malvy, J.D. Povéda, M. Debruyne, B. Burtschy, L. Dostalova and O. Amédée-Manesme, Eur. J. clin. Chem. Clin. Biochem. 31, 47–48 (1993).Google Scholar
  9. 9.
    Y. Ingenbleek and Y.A. Carpentier, Internat. J. Vit. Nutr. Res. 55, 91–101 (1985).Google Scholar
  10. 10.
    J. Arnaud, J. Bellanger, F. Bienvenu, P. Chappuis and A. Favier. Ann. Biol. Clin. 44, 77–87 (1986).Google Scholar
  11. 11.
    J. Nève, S. Chamart and L. Molle, in Trace Element Analytical Chemistry in Medicine and Biology, P. Brat-ter and P. Schramel, eds., Walter de Gruyter, Berlin; 4, pp. 1–10 (1987).Google Scholar
  12. 12.
    SAS user’s guide; statistics, Version 7ed. Cary, NC: SAS Institute, Inc., (1990).Google Scholar
  13. 13.
    G. Ollenschlaeger, K. Konkol, P.D. Wickramanayake, M.S. Schrappe-Baecher and J.M. Mueller, Am. J. Clin. Nutr. 50, 454–459 (1989).Google Scholar
  14. 14.
    N. Vaisman, V.A. Stallings, H. Chan, Sh. S. Weitzman, R. Clarke and P.B. Pencharz, Am. J. Clin. Nutr. 57, 679–684(1993).Google Scholar
  15. 15.
    J.Y. Follézou and M. Bizon, Neoplasma 33, 225–231 (1986).Google Scholar
  16. 16.
    D.V. Godin and S.A. Wohaieb, Free Rad. Biol. Med. 5, 165–176 (1988).CrossRefGoogle Scholar
  17. 17.
    A.T. Diplock, Free Rad. Biol. Med. 3, 199–201 (1987).CrossRefGoogle Scholar
  18. 18.
    J. Conly, J. Suttie, J. Loftson, K. Ramotar and T. Louie, Am. J. Clin. Nutr. 50, 109–113 (1989).Google Scholar
  19. 19.
    W.H.P. Schreurs, J. Odink, R.J. Egger, M. Wedel and P.F. Bruning, Internat. J. Vit. Nutr. Res. 55, 425–432 (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • D. J.-M. Malvy
    • 1
    • 2
  • J. Arnaud
    • 3
  • B. Burtschy
    • 4
  • D. Sommelet
    • 5
  • G. Leverger
    • 6
  • L. Dostalova
    • 7
  • O. Amédée-Manesme
    • 1
  1. 1.INSERM U056Hospital Center of BicêtreBicêtre cedexFrance
  2. 2.Laboratory of Public HealthUniversity of MedicineTours cedexFrance
  3. 3.Laboratory of Biochemistry CUniversity Hospital CenterGrenoble cedexFrance
  4. 4.Stat. Unit. Télécom ParisParis cedex 13France
  5. 5.Department of Pediatrics“II”Children’s HospitalVandœuvre cedexFrance
  6. 6.Department of Pediatric HematologyHospital St. LouisParisFrance
  7. 7.Department of Clinical NutritionF. Hoffmann-La Roche & Co.BaselSwitzerland

Personalised recommendations