Relationship between Antioxidant Enzyme Activities and Cardiac Susceptibility to Ischaemia and Reperfusion during Aging in Rats

Preliminary Study
  • F. Boucher
  • S. Tanguy
  • S. Besse
  • J. de Leiris


Numerous studies have shown that ischaemic damage and the so called reperfusion syndrome of the myocardium are, at least in part, associated to a burst of oxygen-derived free radicals (1). The involvement of reactive oxygen species (ROS) in post-ischaemic contractile dysfunction is supported by several studies underlying the benefit of the use of antioxidant catalytic agents such as Superoxide dismutase and/or catalase during experimental cardiac reperfusion (2,3). Endogenous catalytic ROS scavengers, namely Superoxide dismutase (SOD), catalase (CAT) glutathione peroxidase (GPx) and glutathione reductase (GRx) play key roles in the cellular defence systems against ROS under pathophysiological conditions (3–5). The myocardial activity of these enzymes is therefore determinant to protect the heart during post-ischaemic reperfusion. It is now well established that ageing is associated to an increase in cardiac susceptibility to ischaemia (6) and reperfusion (7) in rats. The present study was designed to define the relationship between the endogenous antioxidant status and cardiac susceptibility to ischaemia and reperfusion during ageing.


Glutathione Peroxidase Glutathione Reductase Antioxidant Enzyme Activity Glutathione Peroxidase Activity Myocardial Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F.R. Boucher, S. Pucheu, C. Coudray, A. Favier and J.G. de Leiris. FEBS letters. 302, 261–264 (1992).CrossRefGoogle Scholar
  2. 2.
    M. Bernier, D.J. Hearse, and A.S. Manning. Circ. Res. 58, 331–340 (1989).CrossRefGoogle Scholar
  3. 3.
    J.M. Downey, B. Omar, H. Oiwa and J. Me Cord. Free Rad. Res. Commun. 12-13, 703–720 (1991).CrossRefGoogle Scholar
  4. 4.
    W.S. Thayer, FEBS Lett. 202, 137–140 (1986).CrossRefGoogle Scholar
  5. 5.
    E. Pigeolet, P. Corbisier, A. Houbion, D. Lambert, C. Michiels, M. Raes, M.D. Zachary and J. Remade. Mech. Aging Develop. 51, 283–297 (1990).CrossRefGoogle Scholar
  6. 6.
    K. Ataka, D. Chen, S. Levitsky, E. Jimenez and H. Feinberg. Circulation. 86 (suppl II), 371–376 (1992).Google Scholar
  7. 7.
    L.H.E.H. Snoeckx, G.J. Vann der Vusse, W.A. Coumans, P.H.M. Willensen and R.S. Reneman. Cardiovasc. Res. 27,874–881(1993).CrossRefGoogle Scholar
  8. 8.
    M.J. Curtis, B. A. Macleod and R. Tabritzchi. J Pharmacol Meth. 15, 87–94 (1986).CrossRefGoogle Scholar
  9. 9.
    D.J. Prockop and S. Udenfriend. Anal. Biochem. 1, 228–239 (1960).CrossRefGoogle Scholar
  10. 10.
    S.L. Marklund. J. Biol. Chem. 251, 7504–7507 (1976).Google Scholar
  11. 11.
    R.F. Beers and I.W. Sizer. J. Biol. Chem. 19, 133–135 (1952).Google Scholar
  12. 12.
    L. Flohe and W.A. Günzler. Assays of glutathione peroxidase. Meth. Enzymol. 105, 114–121 (1984).CrossRefGoogle Scholar
  13. 13.
    I. Carlberg and K. Mannervi. Meth. Enzymol. 113, 484–490 (1985).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • F. Boucher
    • 1
  • S. Tanguy
    • 1
  • S. Besse
    • 1
  • J. de Leiris
    • 1
  1. 1.Physiopathologie Cellulaire Cardiaque, CNRS ESA-5077Université Joseph FourierGrenoble CedexFrance

Personalised recommendations