Abnormalities of Antioxidant Micronutrient Status in Hemodialysis Patients

  • D. J. M. Malvy
  • M. J. Richard
  • J. Pengloan
  • J. Arnaud
  • B. Fouquet
  • H. Nivet
  • A. Favier
  • Ph. Bagros

Abstract

Chronic renal failure, which typically results in end-stage renal failure, is commonly associated with metabolic and functional disturbance, leading to calcium phosphate metabolism and nutritional inadequacies (1). Among the causes of malnutrition, abnormal muscle metabolism, endocrine abnormalities, impaired metabolic kidney functions, and disturbances in nutrient metabolism such as amino acids, vitamins and trace elements, have been described in renal failure patients (1–3). Moreover, hemodialysis (HD) performed to compensate for kidney failure appears to be related to metabolic abnormalities. Dialysis membranes may therefore induce the activation of cellular systems leading to production of multiple inflammatory agents (4), with increased and uncontrolled formation of oxidative products (5, 6). Oxygen-activated species cause a wide array of molecular alterations including lipid peroxidation with generation of aldehydes, eg, malondialdehyde, protein and nucleic acid damages, ultimately resulting in cell death. Intracellular antioxidant defence mechanisms primarily involve constitutive and inducible proteins (8, 9). The greater part of the glutathione peroxidase enzyme (GPX), which catalyzes the reduction of all peroxides in the soluble compartment of the cell, is selenium-(Se) independant in humans. Animal and human studies concerning selenium-dependant GPX have shown a close correlation between enzyme activity and Se status. The major hydrophobic membrane antioxidant is alpha-tocopherol, the principal compound of the vitamin E group. Oxidative injury related to dialysis may therefore occur in patients with serious disturbances of the status of micronutrients involved in antioxidant defence mechanisms, i.e., selenium, zinc and copper (10). This phenomenon is involved in some pathologic manifestations related to dialysis such as osteoarthropathies (11, 12), or numerous others grouped under the term “accelerated dialysis aging” (13, 14).

Keywords

Hemodialyzed Patient Dialysis Session Plasma Selenium Plasma Retinol Atomic Absorption Spectrometric Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.J. Blumenkrantz, J.D. Kopple, R.A. Gutman, Y.K. Chan, G.L. Barbour, Ch. Robert, F.H. Shen, V.C. Ghandi, C.T. Tucker, F.K. Curtis and J.W. Coburn, Am. J. Clin. Nutr. 33, 1567–1585 (1980).Google Scholar
  2. 2.
    J.W. Foote, L.J. Hinks and B. Lloyd. Clin. Chim. Acta 164, 323–328 (1987).CrossRefGoogle Scholar
  3. 3.
    R. Cornelis, L. Mees, S. Ringoir, and J. Hoste, Mineral Electrolyte Metab. 2, 88–93 (1979).Google Scholar
  4. 4.
    B. Jahn, M. Betz, R. Deppisch, O. Jannsen, G. Hansch and E. Ritz, Kidney Int. 40, 285–290 (1990).CrossRefGoogle Scholar
  5. 5.
    M.J. Richard, J. Arnaud, C. Jurkovitz, T. Hachache, H. Meftahi, F. Laporte, M. Foret and A. Favier, Nephron 57, 10–15 (1991).CrossRefGoogle Scholar
  6. 6.
    K. Trznadel, L. Pawlicki, J. Kedziora, M. Luciak, J. Blaszczyk and A. Buczynski, Free Rad Biol. Med. 6, 393–397(1989).CrossRefGoogle Scholar
  7. 7.
    L.A. Videla and V. Fernandez, Arch. Biol Med. Exp. 21, 85–92 (1988).Google Scholar
  8. 8.
    S.P. Andreoli, Pediatr. Nephrol. 5, 733–742 (1991).CrossRefGoogle Scholar
  9. 9.
    Y.R.A. Donatti, D.O. Slosman and B.S. Polla, Biochem. Pharmacol. 40, 2571–2577 (1990).CrossRefGoogle Scholar
  10. 10.
    C.J. Diskin, Nephron 44, 155–156 (1986).CrossRefGoogle Scholar
  11. 11.
    A.M. Bergemer, B. Fouquet, P. Cotty, D. Blanchier, P. Tauveron, P. Goupille, J. Pengloan and J.P. Vallat, Rev. Rhum. 56, 533–538 (1989).Google Scholar
  12. 12.
    J. Munoz-Gomez, E. Bergada-Baroda, R. Gomez-Perez, E. Lopart, E. Subias, J.K. Rotès-Querol and M. Solé, Ann. Rheum. Dis. 44, 729–733 (1985).CrossRefGoogle Scholar
  13. 13.
    S. Schmidtmann, R. Baehr and K. Precht, Nephrol. Dial. Transplant. 5, 600–603 (1990).CrossRefGoogle Scholar
  14. 14.
    E.R. Maher, D.G. Wickens, J.F.A. Griffin, P. Kyle, J.R. Curtis, and T.L. Dormandy, Nephrol. Dial. Transplant. 3, 277–283 (1988).Google Scholar
  15. 15.
    J. Arnaud, J. Bellanger, F. Bienvenu, P. Chappuis and A. Favier, Ann. Biol. Clin. 44, 77–87 (1986).Google Scholar
  16. 16.
    J. Nève, S. Chamart and L. Molle, in Trace Element Analytical Chemistry in Medicine and Biology, P. Bratter and P. Schramel, eds., Walter de Gruyter, Berlin, pp. 349–359 (1987).Google Scholar
  17. 17.
    W.A. Gunzler, H. Kremers and L. Flohe, Z. Klin. Chem. Klin. Biochem. 12, 444–448 (1974).Google Scholar
  18. 18.
    M.J. Richard, B. Portal, J. Meo, C. Coudray, A. Hadjian and A. Favier, Clin. Chem. 38, 704–709 (1992).Google Scholar
  19. 19.
    R.L. Heath and A.L. Tappel, Anal. Biochem. 76, 184–191 (1976).CrossRefGoogle Scholar
  20. 20.
    J.P. Vuilleumier, H.E. Keller, D. Gysel, and F. Hunziker, Internat. J. Vit. Nutr. Res. 53, 265–272 (1983).Google Scholar
  21. 21.
    D. Docci, R. Bilancioni, L. Baldratti, G. Capponcini, F. Turci and C. Feletti, Clin. Nephrol. 34, 88–91 (1990).Google Scholar
  22. 22.
    B. Dworkin, S. Weseley, W. Rosenthal, E. Schwartz and L. Weiss, Am. J. Med. Sci. 293, 6–12 (1987).CrossRefGoogle Scholar
  23. 23.
    M. Bonomini, S.K. Mujais, P. Ivanovich and H. Klinkmann, Nephron 60, 385–389 (1992).CrossRefGoogle Scholar
  24. 24.
    G. Kallistratos, A. Evangelou, K. Seferiadis, P. Vezyraki and K. Barboutis, Nephron 41, 217–222 (1985).CrossRefGoogle Scholar
  25. 25.
    M.D. Saint Georges, DJ. Bonnefont, B.A. Bourely, M.C. Jaudon, P. Cereze, C. Gard, J.C. Chaumiel and C.L. d’Auzac. Presse Médicale 18, 1195–1198 (1989).Google Scholar
  26. 26.
    K. Milly, L. Wit, C. Diskin, and R. Tulley, Nephron 61, 139–144 (1992).CrossRefGoogle Scholar
  27. 27.
    M. Kuroda, T. Imura, K. Morikawa and T. Hasegawa, Trace Elem. Med. 5, 197–103 (1988).Google Scholar
  28. 28.
    G.H. Theil, C.E. Brodine and P.D. Doolan, J. Lab. Clin. Med. 58, 736–742 (1961).Google Scholar
  29. 29.
    S.K. Mahajan, J. Am. Coll. Nutr. 8, 296–304 (1989).Google Scholar
  30. 30.
    M. Taccone Galluci, O. Giardini, C. Ausiello, A. Piazza and D. Bandino, Clin. Nephrol. 25, 81–86 (1986).Google Scholar
  31. 31.
    K. Ono, Nephoron 40, 440–445 (1985).CrossRefGoogle Scholar
  32. 32.
    A.S. Yalçin, M. Yurtkuran, K. Dilek, A. Kilinç, Y Taga and K. Emerk, Clin. Chim. Acta. 185, 109–112 (1989).CrossRefGoogle Scholar
  33. 33.
    E. Delacoux, Th. Evstigneff, M. Leclercq, M.C. Rettori, S. Delons, C. Nazet, and C. Blanchet-Bardon, Clin. Chim. Acta 137, 283–289 (1984).CrossRefGoogle Scholar
  34. 34.
    M. Praga, P.D. Rubio, J.M. Morales, F. Canizares, L.M. Ruilope, V. Gutierrez-Millet, J. Nieto and J.L. Rodicio, Am. J. Nephrol. 7, 281–286 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • D. J. M. Malvy
    • 1
  • M. J. Richard
    • 2
  • J. Pengloan
    • 3
  • J. Arnaud
    • 2
  • B. Fouquet
    • 4
  • H. Nivet
    • 3
  • A. Favier
    • 2
  • Ph. Bagros
    • 3
  1. 1.Laboratory of Public HealthUniversity of Medicine, CHUToursFrance
  2. 2.Laboratory of Biochemistry CCHRUGGrenobleFrance
  3. 3.Department of NephrologyCHUToursFrance
  4. 4.Department of ReabilitationCHUToursFrance

Personalised recommendations