Cetaceans Are Highly Derived Artiodactyls

  • Michel C. Milinkovitch
  • Martine Bérubé
  • Per J. Palsbøll
Part of the Advances in Vertebrate Paleobiology book series (AIVP, volume 1)


Cetaceans (whales, dolphins, and porpoises) form one of the most dramatically derived group of mammals and modern representatives are easily recognized by the telescoping of the skull, posterior movement of the narial openings, isolation of the earbones, shortening of the neck, loss of external hind limbs, reduction of the pelvic girdle, and addition of vertebrae (e.g., Barnes, 1984). These skeletal character states are among the most conspicuous features within a suite of transformations that cetaceans experienced in basically all of their biological systems during their adaptation to the aquatic environment.


Exonic Sequence Maximum Parsimony Analysis Invariable Site Humpback Whale Harbor Porpoise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adachi, J., and Hasegawa, M. 1996. MOLPHY: programs for molecular phylogenetics, version 2.3. Institute of Statistical Mathematics, Tokyo.Google Scholar
  2. Archie, J. W. 1989. A randomization test for phylogenetic information in systematic data. Syst. Zool. 38:219–252.Google Scholar
  3. Barklow, W. 1995. Hippo talk. Nat. Hist. 104:54.Google Scholar
  4. Barnes, L. G. 1984. Whales, dolphins, and porpoises: origin and evolution of the Cetacea, in: T. W. B. Broadhead (ed.), Mammals: Notes for a Short Course organized by P. D. Gingerich and C. E. Badgley, pp. 139-158. University of Tennessee Studies in Geology 8.Google Scholar
  5. Boyden, A., and Gemeroy, D. 1950. The relative position of the Cetacea among the orders of Mammalia as indicated by precipitin tests. Zoologica 35:145–151.Google Scholar
  6. Bremer, K. 1994. Branch support and tree stability. Cladistics 10:295–304.CrossRefGoogle Scholar
  7. Czelusniak, J., Goodman, M., Koop, B. R, Tagle, D. A., Shoshani, J., Braunitzer, G., Kleinschmidt, T. K., De Jong, W. W., and Matsuda, G. 1990. Perspectives from amino acid and nucleotide sequences on cladistic relationships among higher taxa of Eutheria, in: H. H. Genoways (ed.), Current Mammalogy, Volume 2, pp. 545–572. Plenum Press, New York.Google Scholar
  8. DeSalle, R. J., Gatesy, J., Wheeler, W., and Grimaldi, D. 1992. DNA sequences from a fossil termite in OligoMiocene amber and their phylogenetic implications. Science 257:1933–1936.PubMedCrossRefGoogle Scholar
  9. Ebner, K. E., and Schanbacher, F. 1974. In: B. L. Larson and V. R. Smith (eds.), Lactation: A Comprehensive Treatise, Volume 2, Academic Press, New York.Google Scholar
  10. Faith, D. P., and Cranston, P. S. 1991. Could a cladogram this short have arisen by chance alone? On permutation test for cladistic structure. Cladistics 7:1–28.CrossRefGoogle Scholar
  11. Felsenstein, J. 1978. Cases in which parsimony and compatibility methods will be positively misleading. Syst. Zool. 27:401–410.CrossRefGoogle Scholar
  12. Flower, W. H. 1883. On whales, present and past and their probable origin. Proc. Zool. Soc. London 1883:466–513.Google Scholar
  13. Gatesy, J. 1997. More support for a Cetacea/Hippopotamidae clade: the blood-clotting protein gene γ-fibrinogen. Mol. Biol. Evol. 14:537–543.PubMedCrossRefGoogle Scholar
  14. Gatesy, J., DeSalle, R., and Wheeler, W. 1993. Alignment-ambiguous nucleotide sites and the exclusion of systematic data. Mol. Phylogenet. Evol. 2:152–157.PubMedCrossRefGoogle Scholar
  15. Gatesy, J., Hayashi, C., Cronin, M. A., and Arctander, P. 1996. Evidence from milk casein genes that cetaceans are close relatives of hippopotamid artiodactyls. Mol. Biol. Evol. 13:954–963.PubMedCrossRefGoogle Scholar
  16. Gentry, A., and Hooker, J. 1988. The phylogeny of the Artiodactyla, in: M. Benton (ed.), The Phytogeny and Classification of the Tetrapods, Volume 2, pp. 25–272. Clarendon Press, Oxford.Google Scholar
  17. Gingerich, P. D., Smith, B. H., and Simons, E. L. 1990. Hand limbs of Eocene Basilosaurus isis: evidence of feet in whales. Science 249:154–157.PubMedCrossRefGoogle Scholar
  18. Goboloff, P. 1993. Estimating character weights during tree search. Cladistics 9:83–91.CrossRefGoogle Scholar
  19. Goodman, M., Czelusniak, J., and Beeber, J. E. 1985. Phylogeny of primates and other eutherian orders: a cladistic analysis using amino acid and nucleotide sequence data. Cladistics 1:171–185.CrossRefGoogle Scholar
  20. Graur, D., and Higgins, D. G. 1994. Molecular evidence for the inclusion of cetaceans within the order Artiodactyla. Mol. Biol. Evol. 11:357–364.PubMedGoogle Scholar
  21. Hasegawa, M., and Adachi, J. 1996. Phylogenetic position of cetaceans relative to artiodactyls: reanalysis of mi-tochondrial and nuclear sequences. Mol. Biol. Evol. 13:710–717.PubMedCrossRefGoogle Scholar
  22. Hasegawa, M., Kishino, H., and Yano, T. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22:160–174.PubMedCrossRefGoogle Scholar
  23. Heyning, J. E., and Mead, J. G. 1990. Evolution of the nasal anatomy of cetaceans, in: J. Thomas and R. Kastelein (eds.), Sensory Abilities of Cetaceans, pp. 67–79. Plenum Press, New York.Google Scholar
  24. Irwin, D. M., Kocher, T. D., and Wilson, A. C. 1991. Evolution of the cytochrome b gene of mammals. J. Mol. Evol. 32:128–144.PubMedCrossRefGoogle Scholar
  25. Jones, D. T., Taylor, W. R., and Thornton, J. M. 1992. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8:275–282.PubMedGoogle Scholar
  26. Kishino, H., and Hasegawa, M. 1989. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J. Mol. Evol. 29:170–179.PubMedCrossRefGoogle Scholar
  27. Kishino, H., Miyata, T., and Hasegawa, M. 1990. Maximum likelihood inference of protein phylogeny, and the origin of chloroplasts. J. Mol. Evol. 30:151–160.CrossRefGoogle Scholar
  28. Lockhart, P. J., Steel, M. A., Hendy, M. D., and Penny, D. 1994. Recovering evolutionary trees under a more realistic model of sequence evolution. Mol. Biol. Evol. 11:605–612.PubMedGoogle Scholar
  29. Lyons-Weiler, J. 1997. RASA 2.1. Software and documentation for Macintosh. Distributed by the author;
  30. Lyons-Weiler, J., and Hoelzer, G. A. 1997. Escaping from the Felsenstein zone by detecting long branches in phylogenetic data. Mol. Phylogenet. Evol. 8(3):375–384.PubMedCrossRefGoogle Scholar
  31. Lyons-Weiler, J., Hoelzer, G. A., and Tausch, R. J. 1996. Relative apparent synapomorphy analysis (RASA) I: the statistical measurement of phylogenetic signal. Mol. Biol. Evol. 13:749–757.PubMedCrossRefGoogle Scholar
  32. Lyons-Weiler, J., Hoelzer, G. A., and Tausch, R. J. In press. Relative apparent synapomorphy analysis (RASA) II: optimal outgroup analysis. Biol. J. Unn. Soc. Google Scholar
  33. Milinkovitch, M. C. 1992. DNA-DNA hybridizations support ungulate ancestry of Cetacea. J. Evol. Biol. 5:149–160.CrossRefGoogle Scholar
  34. Milinkovitch, M. C. 1994. Phylogenetic analyses of molecular data in vertebrates with special emphasis on the implications of mitochondrial DNA sequences for reevaluating morphological and behavioral evolution in cetaceans. Ph.D. thesis, Brussels Free University.Google Scholar
  35. Milinkovitch, M. C. 1995. Molecular phytogeny of cetaceans prompts revision of morphological transformations. Trends Ecoi Evol. 10:328–334.CrossRefGoogle Scholar
  36. Milinkovitch, M. C. 1997. The phylogeny of whales: a molecular approach, in: A. E. Dizon, S. J. Olivers, and W. F. Perrin (eds.), Molecular Genetics of Marine Mammals, pp. 317–338. Society for Marine Mammology, Lawrence, KS.Google Scholar
  37. Milinkovitch, M. C., and Thewissen, J. G. M. 1997. Eventoed fingerprints on whale ancestry. Nature 388:622–624.CrossRefGoogle Scholar
  38. Milinkovitch, M. C., Ortí, G., and Meyer, A. 1993. Revised phylogeny of whales suggested by mitochondrial ribosomal DNA sequences. Nature 361:346–348.PubMedCrossRefGoogle Scholar
  39. Milinkovitch, M. C., Meyer, A., and Powell, J. R. 1994. Phylogeny of all major groups of cetaceans based on DNA sequences from three mitochondrial genes. Mol. Biol. Evol. 11:939–948.PubMedGoogle Scholar
  40. Milinkovitch, M. C., Leduc, R. G., Adachi, J., Farnir, F., Georges, M., and Hasegawa, M. 1996. Effects of character weighting and species sampling on phylogeny reconstruction: a case study based on DNA sequence data in cetaceans. Genetics 144:1817–1833.PubMedGoogle Scholar
  41. Montgelard, C., Catzeflis, F. M., and Douzery, E. 1997. Phylogenetic relationships of artiodactyls and cetaceans as deduced from the comparison of cytochrome b and 12S rRNA mitochondrial sequences. Mol. Biol. Evol. 14:550–559.PubMedCrossRefGoogle Scholar
  42. Philippe, H., and Douzery, E. 1994. The pitfalls of molecular phylogeny based on four species, as illustrated by the Cetacea/Artiodactyla relationships. J. Mamm. Evol. 2:133–152.CrossRefGoogle Scholar
  43. Prothero, D. 1993. Ungulate phylogeny: molecular versus morphological evidence, in: F. Szalay, M. Novacek, and M. McKenna (eds.), Mammal Phylogeny, Volume 2, pp. 173–181. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  44. Prothero, D., Manning, E., and Fischer, M. 1988. The phylogeny of the ungulates, in: M. J. Benton (ed.), The Phylogeny and Classification of the Tetrapods, Volume 2, pp. 201–234. Clarendon Press, Oxford.Google Scholar
  45. Sambrook, J., Fritsch, E. F., and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  46. Shimamura, M., Yasue, H., Ohshima, K., Abe, H., Kato, H., Kishiro, T., Goto, M., Munechika, I., and Okada, N. 1997. Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature 388:666–671.PubMedCrossRefGoogle Scholar
  47. Shoshani, J. 1986. Mammalian phylogeny: comparison of morphological and molecular results. Mol. Biol. Evol. 3:222–242.PubMedGoogle Scholar
  48. Smith, M., Shivji, M., Waddell, V, and Stanhope, M. 1996. Phylogenetic evidence from the IRBP gene for the paraphyly of toothed whales, with mixed support for Cetacea as a suborder of artiodactyls. Mol. Biol. Evol. 13:918–922.PubMedCrossRefGoogle Scholar
  49. Steel, M. 1994. Recovering a tree from the Markov leaf colourations it generates under a Markov model. Appl. Math. Lett. 7:19–23.CrossRefGoogle Scholar
  50. Strimmer, K., and von Haeseler, A. 1996. Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol. Biol. Evol. 13:964–969.CrossRefGoogle Scholar
  51. Strimmer, K., and von Haeseler, A. 1997a. PUZZLE 3.1, maximum likelihood analysis for nucleotide and amino acid alignments. Software and documentation distributed by the authors; http://www.zi.biologie.unimuenchen.devstrimmer/puzzle.html.
  52. Strimmer, K., and von Haeseler, A. 1997b. Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc. Natl. Acad. Sci. USA 94:6815–6819.PubMedCrossRefGoogle Scholar
  53. Sullivan, J., and Swofford, D. L. In press. Uncertainty in estimating parameters of invariable-sites plus gamma models of rate heterogeneity: the effect of taxon sampling. Mol. Biol. Evol. Google Scholar
  54. Swofford, D. L. 1997. PAUP*: Phylogenetic Analysis Using Parsimony (and other methods), Versions 4.0d56, d57, d59, in progress. Sinauer Associates, Sunderland, MA.Google Scholar
  55. Swofford, D. L., Olsen, G. J., Waddell, P. J., and Hillis, D. 1996. Phylogenetic inference, in: D. M. Hillis, C. Moritz, and B. K. Mable (eds.), Molecular Systematics, 2nd ed, pp. 407–514. Sinauer Associates, Sunderland, MA.Google Scholar
  56. Theodor, J. M. 1996. Why do molecules and morphology conflict? Examination of the Artiodactyl-Cetacea relationship. J. Vertebr. Paleontol. 17(Suppl.):80A.Google Scholar
  57. Thewissen, J. G. M. 1994. Phylogenetic aspects of cetacean origins: a morphological perspective. J. Mamm. Evol. 2:157–184.CrossRefGoogle Scholar
  58. Thewissen, J. G. M., and Hussain, S. T. 1993. Origin of underwater hearing in whales. Nature 361:444–445.PubMedCrossRefGoogle Scholar
  59. Thewissen, J. G. M., Madar, S. I., and Hussain, S. T. 1996. Ambulocetus natans, an Eocene cetacean (Mammalia) from Pakistan. Cour. Forsch.-Inst. Senckenberg 191:1–86.Google Scholar
  60. Thompson, J. D., Higgins, D. G., and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673–4680.PubMedCrossRefGoogle Scholar
  61. Vilotte, J.-L., Soulier, S., Mercier, J.-C, Gaye, P., Hue-Delahaie, D., and Furet, J.-P. 1987. Complete nucleotide sequence of α-lactalbumin gene: comparison with its rat counterpart. Biochimie 69:609–620.PubMedCrossRefGoogle Scholar
  62. Waddell, P. J. 1995. Statistical methods of phylogenetic analysis, including Hadamar conjugations, LogDet transforms, and maximum likelihood. Ph.D. dissertation, Massey University.Google Scholar
  63. Wheeler, W. C. 1990. Nucleic acid sequence phylogeny and random outgroups. Cladistics 6:363–367.CrossRefGoogle Scholar
  64. Zhou, X., Zhai, R., Gingerich, P. D., and Chen, L. 1995. Skull of anew mesonychid (Mammalia, Mesonychia) from the late Paleocene of China. J. Vertebr. Paleontol. 15:387–400.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Michel C. Milinkovitch
    • 1
  • Martine Bérubé
    • 2
  • Per J. Palsbøll
    • 3
  1. 1.Evolutionary GeneticsFree University of Brussels (ULB)BrusselsBelgium
  2. 2.Department of Population BiologyCopenhagen UniversityCopenhagen ØDenmark
  3. 3.Department of Ecology and Evolutionary BiologyUniversity of California, IrvineIrvineUSA

Personalised recommendations