Skip to main content

Isotopic Approaches to Understanding the Terrestrial-to-Marine Transition of the Earliest Cetaceans

  • Chapter
The Emergence of Whales

Abstract

The fossil record is replete with examples of evolutionary transitions between marine and freshwater environments, in both directions. Perhaps the most striking and best documented example of such a transition is the evolution of cetaceans (whales, dolphins, and porpoises) from the extinct group of terrestrial mammals called mesonychians. This transition, first hypothesized by Van Valen (1966), occurred in the temporally and geographically restricted setting of the Paleogene remnant Tethyan epicontinental sea (Gingerich et al., 1983) and adjacent terrestrial ecosystems. These environments lay in the zone of convergence between the Indian Plate and southern Eurasia during the early stages of the continent-continent collision that ultimately produced the Himalayas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albright, L. B. 1996. A protocetid cetacean from the Eocene of South Carolina. J. Paleontol. 70(3):519–523.

    Google Scholar 

  • Allen, P., and Keith, M. L. 1965. Carbon isotope ratios and paleosalinities of Purbeck-Wealden carbonates. Nature 208:1278–1280.

    Article  CAS  Google Scholar 

  • Ames, A., van Vleet, E. S., and Sackett, W. M. 1996. The use of stable carbon isotope analysis for determining the dietary habits of the Florida manatee, Tricechus manatus latirostris. Mar. Mamm. Sci. 12(4):555–563.

    Article  Google Scholar 

  • Andersen, S. H., and Nielsen, E. 1983. Exchange of water between the harbor porpoise, Phocoena phocoena, and the environment. Experientia 39:52–53.

    Article  PubMed  CAS  Google Scholar 

  • Asian, A., and Thewissen, J. G. M. 1996. Preliminary evaluation of Kuldana paleosols and implications for the interpretation of vertebrate fossil assemblages, Kuldana Formation, northern Pakistan, Palaeovertebrata 25(2–4):261–277.

    Google Scholar 

  • Ayliffe, L. K., and Chivas, A. R. 1990. Oxygen isotope composition of the bone phosphate of Australian kangaroos: potential as a palaeoenvironmental recorder. Geochim. Cosmochim. Acta 54:2603–2609.

    Article  CAS  Google Scholar 

  • Ayliffe, L. K., Lister, A. M, and Chivas, A. R. 1992. The preservation of glacial-interglacial climatic signatures in the oxygen isotopes of elephant skeletal phosphate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 99:179–191.

    Article  Google Scholar 

  • Ayliffe, L. K., Chivas, A. R., and Leakey, M. G. 1994. The retention of primary oxygen isotope compositions of fossil elephant skeletal phosphate. Geochim. Cosmochim. Acta 58(23):5291–5298.

    Article  CAS  Google Scholar 

  • Barrick, R. E., Fischer, A. G., Kolodny, Y., Luz, B., and Bohaska, D. 1992. Cetacean bone oxygen isotopes as proxies for Miocene ocean composition and glaciation. Palaios 7:521–531.

    Article  Google Scholar 

  • Bentley, P. J. 1963. Composition of the urine of the fasting humpback whale (Megaptera nodosa). Comp. Biochem. Physiol. 10:257–259.

    Article  PubMed  CAS  Google Scholar 

  • Bentley, P. J. 1971. Endocrines and Osmoregulation, a Comparative Account of the Regulation of Water and Salt in the Vertebrates. Springer-Verlag, Berlin.

    Google Scholar 

  • Bryant, J. D., and Froelich, P. N. 1995. A model of oxygen isotope fractionation in body water of large mammals. Geochim. Cosmochim. Acta 59(21):4523–4537.

    Article  CAS  Google Scholar 

  • Clayton, R. N., and Degens, E. T. 1959. Use of carbon isotope analyses for differentiating fresh-water and marine sediments. Am. Assoc. Petrol. Geol. Bull. 43:890–897.

    CAS  Google Scholar 

  • Craig, H. 1961a. Isotopic variations in meteoric waters. Science 133:1702–1703.

    Article  PubMed  CAS  Google Scholar 

  • Craig, H. 1961b. Standards for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133:1833–1834.

    Article  PubMed  CAS  Google Scholar 

  • Craig, H., and Gordon, L. I. 1965. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere, in: E. Tongiorigi (ed.), Stable Isotopes in Oceanographic Studies and Paleotemperatures, pp. 9–129. Con-siglio Nazionale delle Ricerche, Pisa.

    Google Scholar 

  • Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus 16(4):436–468.

    Article  Google Scholar 

  • DeNiro, M. J., and Epstein, S. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42:495–506.

    Article  CAS  Google Scholar 

  • Epstein, S., and Mayeda, T. 1953. Variation of O18 content of waters from natural sources. Geochim. Cosmochim. Acta 4:213–224.

    Article  CAS  Google Scholar 

  • Fetcher, E. S., Jr., and Fetcher, G. W. 1942. Experiments on the osmotic regulation of dolphins. J. Cell. Comp. Physiol. 19:123–130.

    Article  CAS  Google Scholar 

  • Fricke, H. C., and O’Neil, J. R. 1996. Inter-and intra-tooth variation in the oxygen isotope composition of mammalian tooth enamel phosphate: implications for palaeoclimatological and palaeobiological research. Palaeogeogr. Palaeoclimatol. Palaeoecol. 126:91–99.

    Article  Google Scholar 

  • Friedman, I., and O’Neil, J. R. 1977. Compilation of stable isotope fractionation factors of geochemical interest, in: M. Fleischer (ed.), Data of Geochemistry, U.S. Geol. Surv. Prof. Pap. 440-KK.

    Google Scholar 

  • Fry, B., and Sherr, E. B. 1984. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib. Mar. Sci. 27:13–47.

    CAS  Google Scholar 

  • Gat, J. R. 1981. Isotopic fractionation, in: J. R. Gat and R. Gonfiantini (eds.), Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle, pp. 21-33. IAEA Tech. Rep. Ser. No. 210.

    Google Scholar 

  • Gingerich, P. D., Wells, N. A., Russell, D. E., and Shah, S. M. I. 1983. Origin of whales in epicontinental remnant seas: new evidence from the early Eocene of Pakistan. Science 220:403–406.

    Article  PubMed  CAS  Google Scholar 

  • Gingerich, P. D., Raza, S. M., Arif, M., Anwar, M., and Zhou, X. 1994. New whale from the Eocene of Pakistan and the origin of cetacean swimming. Nature 368:844–847.

    Article  Google Scholar 

  • Hobson, K. A., Sease, J. L., Merrick, R. L., and Piatt, J. F. 1997. Investigating trophic relationships of pinnipeds in Alaska and Washington using stable isotopic ratios of nitrogen and carbon. Mar. Mamm. Sci. 13(1):114–132.

    Article  Google Scholar 

  • Hui, C. A. 1981. Seawater consumption and water flux in the common dolphin Delphinus delphis. Physiol. Zool. 54:430–440.

    CAS  Google Scholar 

  • Hulbert, R. C., and Petkewich, R. M. 1991. Innominate of a middle Eocene (Lutetian) protocetid whale from Georgia. J. Vertebr. Paleontol. 11(Suppl. to No. 3):36A.

    Google Scholar 

  • International Atomic Energy Agency. 1986. Environmental Isotope Data No. 8: World Survey of Isotope Concentration in Precipitation (1980–1983). Tech. Rep. Ser. No. 264.

    Google Scholar 

  • Keegan, W. F., and DeNiro, M. J. 1988. Stable carbon-and nitrogen-isotope ratios of bone collagen used to study coral-reef and terrestrial components of prehistoric Bahamian diet. Am. Antiq. 53(2):320–336.

    Article  Google Scholar 

  • Keith, M. L., and Parker, R. H. 1965. Local variation of the 13C and I8O content of mollusk shells and the relatively minor temperature effect in marginal marine environments. Mar. Geol. 3:115–129.

    Article  Google Scholar 

  • Keith, M. L., Anderson, G. M., and Eichler, R. 1964. Carbon and oxygen isotopic composition of mollusk shells from marine and fresh-water environments. Geochim. Cosmochim. Acta 28:1757–1786.

    Article  CAS  Google Scholar 

  • Kirschner, L. B. 1991. Water and ions, in: C. L. Presser (ed.). Environmental and Metabolic Animal Physiology: Comparative Physiology, 4th ed., pp. 13–108. Wiley-Liss, New York.

    Google Scholar 

  • Koch, P. L., Fogel, M. L., and Tuross, N. 1994. Tracing the diets of fossil animals using stable isotopes, in: K. Lajtha and R. H. Michener (eds.), Stable Isotopes in Ecology and Environmental Science, pp. 63–92. Blackwell, Oxford.

    Google Scholar 

  • Kohn, M. J. 1996. Predicting animal δ18O: accounting for diet and physiological adaptation. Geochim. Cosmochim. Acta 60(23):4811–4829.

    Article  CAS  Google Scholar 

  • Kohn, M. J., Schoeninger, M. J., and Valley, J. W. 1996. Herbivore tooth oxygen isotope compositions: effects of diet and physiology. Geochim. Cosmochim. Acta 60(20):3889–3896.

    Article  CAS  Google Scholar 

  • Kolodny, Y., and Luz, B. 1991. Oxygen isotopes in phosphates of fossil fish; Devonian to Recent, in: H. P. Taylor, Jr., J. R. O’Neil, and I. R. Kaplan (eds.), Stable Isotope Geochemistry; a Tribute to Samuel Epstein, pp. 105–119. Geochemical Society Special Publication No. 3, University Park, PA.

    Google Scholar 

  • Kolodny, Y, Luz, B., and Navon, O. 1983. Oxygen isotope variations in phosphate of biogenic apatites, I. Fish bone apatite—rechecking the rules of the game. Earth Planet. Sci. Lett. 64:398–404.

    Article  CAS  Google Scholar 

  • Kumar, K., and Sahni, A. 1986. Remingtonocetus harudiensis, new combination, a middle Eocene archaeocete (Mammalia, Cetacea) from western Kutch, India. J. Vertebr. Paleontol. 6:326–349.

    Article  Google Scholar 

  • Lee-Thorp, J. A., and van der Merwe, N. J. 1987. Carbon isotope analysis of fossil bone apatite. S. Afr. J. Sci. 83:712–715.

    Google Scholar 

  • Lee-Thorp, J. A., and van der Merwe, N. J. 1991. Aspects of the chemistry of modern and fossil biological apatites. J. Archaeol. Sci. 18:343–354.

    Article  Google Scholar 

  • Little, E. A., and Schoeninger, M. J. 1995. The Late Woodland diet on Nantucket Island and the problem of maize in coastal New England. Am. Antiq. 60(2):351–368.

    Article  Google Scholar 

  • Longinelli, A., and Nuti, A. 1973a. Revised phosphate-water isotopic temperature scale. Earth Planet. Sci. Lett. 19:373–376.

    Article  CAS  Google Scholar 

  • Longinelli, A., and Nuti, A. 1973b. Oxygen isotope measurements of phosphate from fish teeth and bones. Earth Planet. Sci. Lett. 20:337–340.

    Article  CAS  Google Scholar 

  • Luz, B., and Kolodny, Y. 1985. Oxygen isotope variations in phosphate of biogenic apatites, IV. Mammal teeth and bones. Earth Planet. Sci. Lett. 75:29–36.

    Article  CAS  Google Scholar 

  • Luz, B., and Kolodny, Y. 1989. Oxygen isotope variation in bone phosphate. Appl. Geochem. 4:317–323.

    Article  CAS  Google Scholar 

  • Luz, B., Kolodny, Y, and Horowitz, M. 1984. Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochim. Cosmochim. Acta 48:1689–1693.

    Article  CAS  Google Scholar 

  • Luz, B., Cormie, A. B., and Schwarcz, H. P. 1990. Oxygen isotope variations in phosphate of deer bones. Geochim. Cosmochim. Acta 54:1723–1728.

    Article  Google Scholar 

  • McCrea, J. M. 1950. On the isotopic chemistry of carbonates and a paleotemperature scale. J. Chem. Phys. 18:849–857.

    Article  CAS  Google Scholar 

  • Messenger, S. L. 1994. Phylogenetic relationships of palatanistoid river dolphins (Odontoceti, Cetacea): assessing the significance of fossil taxa. Proc. San Diego Soc. Nat. Hist. 29:125–133.

    Google Scholar 

  • Muizon, C. de. 1994. Are the squalodonts related to the platanistoids? Proc. San Diego Soc. Nat. Hist. 29:135–146.

    Google Scholar 

  • Nelson, B. K., DeNiro, M. J., Schoeninger, M. J., DePaolo, D. J., and Hare, P. E. 1986. Effects of diagenesis on strontium, carbon, nitrogen and oxygen concentration and isotopic composition of bone. Geochim. Cosmochim. Acta 50:1941–1949.

    Article  CAS  Google Scholar 

  • O’Neil, J. R., Roe, L. J., Reinhard, E., and Blake, R. E. 1994. A rapid and precise method of oxygen isotope analysis of biogenic phosphate. Isr. J. Earth Sci. 43:203–212.

    Google Scholar 

  • Peterson, B. J., and Fry, B. 1987. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 18:293–320.

    Article  Google Scholar 

  • Quade, J., Cerling, T. E., Barry, J. C., Morgan, M. E., Pilbeam, D. R., Chivas, A. R., Lee-Thorp, J. A., and van der Merwe, N. J. 1992. A 16-Ma record of paleodiet using carbon and oxygen isotopes in fossil teeth from Pakistan. Chem. Geol. (Isot. Geosci.) 94:183–192.

    Article  CAS  Google Scholar 

  • Rau, G. H., Sweeney, R. E., and Kaplan, I. R., 1982. Plankton 13C:12C ratio changes with latitude: differences between the northern and southern oceans. Deep Sea Res. 29(8A):1035–1039.

    CAS  Google Scholar 

  • Ridgway, S. H. 1972. Homeostasis in the aquatic environment, in: S. H. Ridgway (ed.), Mammals of the Sea, Biology and Medicine, pp. 590–747. Thomas, Springfield, IL.

    Google Scholar 

  • Sahni, A., and Mishra, V. P. 1975. Lower Tertiary vertebrates from western Kutch. Monogr. Palaeontol. Soc. India 3:1–48.

    Google Scholar 

  • Schmidt-Nielsen, K. 1964. Desert Animals, Physiological Problems of Heat and Water. Clarendon Press, Oxford.

    Google Scholar 

  • Schmidt-Nielsen, K. 1997. Animal Physiology: Adaptation and Environment, 5th ed. Cambridge University Press, London.

    Google Scholar 

  • Schoeninger, M. J., and DeNiro, M. J. 1984. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochim. Cosmochim. Acta 48:625–639.

    Article  CAS  Google Scholar 

  • Shemesh, A. 1990. Crystallinity and diagenesis of sedimentary apatites. Geochim. Cosmochim. Acta 54:2433–2438.

    Article  CAS  Google Scholar 

  • Smith, R. J., Hobson, K. A., Koopman, H. N., and Lavigne, D. M. 1996. Distinguishing between populations of fresh-and salt-water harbour seals (Phoca vitulina) using stable isotope ratios and fatty acid profiles. Can. J. Fish. Aquat. Sci. 53:272–279.

    Article  Google Scholar 

  • Sokolov, V. E., Mashcherskii, I. G., Feoktistova, N. Y, and Klishin, V. O. 1994. Water balance of the Black Sea bottle-nosed dolphin. Dokl. Akad. Nauk 335:396–398.

    PubMed  CAS  Google Scholar 

  • Telfer, N., Cornell, L. H., and Prescott, J. H. 1970. Do dolphins drink water? J. Am. Vet. Med. Assoc. 157:555–558.

    PubMed  CAS  Google Scholar 

  • Thewissen, J. G. M., and Hussain, S. T. 1993. Origin of underwater hearing in whales. Nature 361:444–445.

    Article  PubMed  CAS  Google Scholar 

  • Thewissen, J. G. M., and Hussain, S. T. 1998. Systematic review of the Pakicetidae, early and middle Eocene Cetacea (Mammalia) from Pakistan and India. Bull. Carnegie Mus. Nat. Hist. 34:220–238.

    Google Scholar 

  • Thewissen, J. G. M., Hussain, S. T., and Arif, M. 1994. Fossil evidence for the origin of aquatic locomotion in archaeocete whales. Science 263:210–212.

    Article  PubMed  CAS  Google Scholar 

  • Thewissen, J. G. M, Madar, S. I., and Hussain, S. T. 1996a. Ambulocetus natans, an Eocene cetacean (Mammalia) from Pakistan. Cour. Forsch.-Inst. Senckenberg 191:1–86.

    Google Scholar 

  • Thewissen, J. G. M, Roe, L. J., O’Neil, J. R., Hussain, S. T., Sahni, A., and Bajpai, S. 1996b. Evolution of cetacean osmoregulation. Nature 381:379–380.

    Article  CAS  Google Scholar 

  • Van Valen, L. 1966. Deltatheridia, a new order of mammals. Bull. Am. Mus. Nat. Hist. 132:1–126.

    Google Scholar 

  • Wells, N. A. 1983. Transient streams in sand-poor redbeds: early-middle Eocene Kuldana Formation of northern Pakistan. Spec. Publ. Int. Assoc. Sedimentol. 6:393–403.

    Google Scholar 

  • Wells, N. A. 1984. Marine and continental sedimentation in the early Cenozoic Kohat Basin and adjacent northwestern Indo-Pakistan. Ph.D. dissertation. University of Michigan, 465 pp.

    Google Scholar 

  • West, R. M., and Lukacs, J. R. 1979. Geology and vertebrate-fossil localities, Tertiary continental rocks, Kala Chitta Hills, Attock District, Pakistan. Milwaukee Public Mus. Contrib. Biol. Geol. 26:1–20.

    CAS  Google Scholar 

  • Whelan, J. F. 1987. Stable isotope hydrology, in: T. K. Kyser, (ed.), Stable Isotope Geochemistry of Low Temperature Fluids. Mineral. Assoc. Can. Short Course 13129-161.

    Google Scholar 

  • Yoshida, N., and Miyazaki, N. 1991. Oxygen isotope correlation of cetacean bone phosphate with environmental water. J. Geophys. Res. 96(C1):815–820.

    Article  Google Scholar 

  • Zachos, J. C., Stott, L. D., and Lohmann, K. C. 1994. Evolution of early Cenozoic marine temperatures. Paleoceanography 9(2):358–387.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Roe, L.J. et al. (1998). Isotopic Approaches to Understanding the Terrestrial-to-Marine Transition of the Earliest Cetaceans. In: Thewissen, J.G.M. (eds) The Emergence of Whales. Advances in Vertebrate Paleobiology, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0159-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0159-0_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0161-3

  • Online ISBN: 978-1-4899-0159-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics