Biomechanical Perspective on the Origin of Cetacean Flukes

  • Frank E. Fish
Part of the Advances in Vertebrate Paleobiology book series (AIVP, volume 1)


The evolution of aquatic forms from terrestrial ancestors has been a reoccurring event in the history of the vertebrates. As these animals adapted to the aquatic environment, the most derived representatives developed structures and mechanisms for high-performance propulsion in water. These organisms converged on propulsive modes that utilized oscillating hydrofoils for rapid and sustained swimming (Howell, 1930; Webb, 1975; Webb and Buffrénil, 1990; Fish, 1993a).


Swimming Speed Killer Whale Bottlenose Dolphin Harbor Porpoise Caudal Vertebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, I. H., and von Doenhoff, A. E. 1959. Theory of Wing Sections. Dover, New York.Google Scholar
  2. Ahmadi, A. R., and Widnall, S. E. 1986. Energetics and optimum motion of oscillating lifting surfaces of finite span. J. Fluid Mech. 162:261–282.CrossRefGoogle Scholar
  3. Amano, M., and Miyazaki, N. 1993. External morphology of Dall’s porpoise (Phocoenoides dalli): growth and sexual dimorphism. Can. J. Zool. 71:1124–1130.CrossRefGoogle Scholar
  4. Andrews, R. C. 1921. A remarkable case of external hind limbs in a humpback whale. Am. Mus. Novit. 9:1–6.Google Scholar
  5. Ashenberg, J., and Weihs, D. 1984. Minimum induced drag of wings with curved planform. J. Aircr. 21:89–91.CrossRefGoogle Scholar
  6. Azuma, A. 1983. Biomechanical aspects of animal flying and swimming, in: H. Matsui and K. Kobayashi (eds.), Biomechanics VIII-A: International Series on Biomechanics, Volume 4A, pp. 35–53. Human Kinetics Publishers, Champaign, IL.Google Scholar
  7. Barnes, L. G., Domning, D. P., and Ray, C. E. 1985. Status of studies on fossil marine mammals. Mar. Mamm. Sci. 1:15–53.CrossRefGoogle Scholar
  8. Bello, M. A., Roy, R. R., Martin, T. P., Goforth, H. W., Jr., and Edgerton, V. R. 1985. Axial musculature in the dolphin (Tursiops truncatus): some architectural and histochemical characteristics. Mar. Mamm. Sci. 1:324–336.CrossRefGoogle Scholar
  9. Best, R. C., and da Silva, V. M. F. 1989. Amazon river dolphin, boto Inia geoffrensis (de Blainville, 1817), in: S. H. Ridgeway and R. Harrison (eds.), Handbook of Marine Mammals, Volume 4, pp. 1–23. Academic Press, London.Google Scholar
  10. Blake, R. W. 1983. Fish Locomotion. Cambridge University Press, London.Google Scholar
  11. Bose, N., and Lien, J. 1989. Propulsion of a fin whale (Balaenoptera physalus): why the fin whale is a fast swimmer. Prvc. R. Soc. London Ser. B 237:175–200.CrossRefGoogle Scholar
  12. Bose, N., Lien, J., and Ahia, J. 1990. Measurements of the bodies and flukes of several cetacean species. Proc. R. Soc. London Ser. B 242:163–173.CrossRefGoogle Scholar
  13. Chanin, P. 1985. The Natural History of Otters. Facts on File, New York.Google Scholar
  14. Chopra, M. G. 1975. Lunate-tail swimming propulsion, in: T. Y. Wu, C. J. Brokaw, and C. Brennen (eds.), Swimming and Flying in Nature, Volume 2, pp. 635–650. Plenum Press, New York.CrossRefGoogle Scholar
  15. Chopra, M. G. 1976. Large amplitude lunate-tail theory of fish locomotion. J. Fluid Mech. 74:161–182.CrossRefGoogle Scholar
  16. Chopra, M. G., and Kambe, T. 1977. Hydrodynamics of lunate-tail swimming propulsion. Part 2. J. Fluid Mech. 79:49–69.CrossRefGoogle Scholar
  17. Curren, K. C. 1992. Designs for swimming: morphometrics and swimming dynamics of several cetacean species. M.S. thesis, Memorial University of Newfoundland.Google Scholar
  18. Curren, K. C., Bose, N., and Lien, J. 1993. Morphological variation in the harbour porpoise (Phocoena phocoena). Can. J. Zool. 71:1067–1070.CrossRefGoogle Scholar
  19. Curren, K. C., Bose, N., and Lien, J. 1994. Swimming kinematics of a harbor porpoise (Phocoena phocoena) and an Atlantic white-sided dolphin (Lagenorhynchus acutus). Mar. Mamm. Sci. 10:485–492.CrossRefGoogle Scholar
  20. Daniel, T. 1988. Forward flapping flight from flexible fins. Can. J. Zool. 66:630–638.CrossRefGoogle Scholar
  21. Daniel, T. 1991. Efficiency in aquatic locomotion: limitations from single cells to animals, in: R. W. Blake (ed.), Efficiency and Economy in Animal Physiology, pp. 83–95. Cambridge University Press, London.Google Scholar
  22. Daniel, T., Jordan, C., and Grunbaum, D. 1992. Hydromechanics of swimming, in: R. M. Alexander (ed.), Advances in Comparative and Environmental Physiology, Volume 11, pp. 17–49. Springer-Verlag, Berlin.Google Scholar
  23. Feldkamp, S. D. 1987. Foreflipper propulsion in the California sea lion, Zalophus californianus. J. Zool. 212:43–57.CrossRefGoogle Scholar
  24. Felts, W. J. L. 1966. Some functional and structural characteristics of cetaceans’ flippers and flukes, in: K. S. Norris (ed.), Whales, Dolphins and Porpoises, pp. 255–276. University of California Press, Berkeley.Google Scholar
  25. Fierstine, H. L., and Walters, V. 1968. Studies of locomotion and anatomy of scombrid fishes. Mem. South. Calif. Acad. Sci. 6:1–31.Google Scholar
  26. Fish, F. E. 1979. Thermorégulation in the muskrat (Ondatra zibethicus): the use of regional heterothermia. Comp. Biochem. Physiol. 64:391–397.CrossRefGoogle Scholar
  27. Fish, F. E. 1984. Mechanics, power output and efficiency of the swimming muskrat (Ondatra zibethicus). J. Exp. Biol. 110:183–201.PubMedGoogle Scholar
  28. Fish, F. E. 1992. Aquatic locomotion, in: T. E. Tomasi and T. H. Horton (eds.), Mammalian Energetics: Interdisciplinary Views of Metabolism and Reproduction, pp. 34–63. Cornell University Press, Ithaca, NY.Google Scholar
  29. Fish, F. E. 1993a. Influence of hydrodynamic design and propulsive mode on mammalian swimming energetics. Aust. J. Zool. 42:79–101.CrossRefGoogle Scholar
  30. Fish, F. E. 1993b. Power output and propulsive efficiency of swimming bottlenose dolphins (Tursiops truncatus). J. Exp. Biol. 185:179–193.Google Scholar
  31. Fish, F. E. 1993c. Comparison of swimming kinematics between terrestrial and semiaquatic opossums. J. Mammal. 74:275–284.CrossRefGoogle Scholar
  32. Fish, F. E. 1994. Association of propulsive swimming mode with behavior in river otters (Lutra canadensis). J. Mammal. 75:989–997.CrossRefGoogle Scholar
  33. Fish, F. E. 1996. Transitions from drag-based to lift-based propulsion in mammalian swimming. Am. Zool. 36:628–641.Google Scholar
  34. Fish, F. E., and Hui, C. A. 1991. Dolphin swimming—a review. Mammal Rev. 21:181–195.CrossRefGoogle Scholar
  35. Fish, F. E., Innes, S., and Ronald, K. 1988. Kinematics and estimated thrust production of swimming harp and ringed seals. J. Exp. Biol. 137:157–173.PubMedGoogle Scholar
  36. Flower, W. H. 1883. On whales, past and present, and their probable origin. Nature 28:226–230.Google Scholar
  37. Folkens, P. A., and Barnes, L. G. 1984. Reconstruction of an archaeocete. Oceans 17:22–23.Google Scholar
  38. Fordyce, R. E. 1992. Cetacean evolution and Eocene/Oligocene environments, in: D. R. Prothero and W. A. Berggren (eds.), Eocene-Oligocene Climatic and Biotic Evolution, pp. 368–381. Princeton University Press, Princeton, NJ.Google Scholar
  39. Gingerich, P. D., Wells, N. A., Russell, D. E., and Shah, S. M. I. 1983. Origin of whales in epicontinental remnant seas: new evidence from the early Eocene of Pakistan. Science 220:403–406.PubMedCrossRefGoogle Scholar
  40. Gingerich, P. D., Smith, B. H., and Simons, E. L. 1990. Hind limbs of Eocene Basilosaurus isis: evidence of feet in whales. Science 249:154–157.PubMedCrossRefGoogle Scholar
  41. Gingerich, P. D., Raza, S. M., Arif, M., Anwar, M., and Zhou, X. 1994. New whale from the Eocene of Pakistan and the origin of cetacean swimming. Science 368:844–847.Google Scholar
  42. Goforth, H. W. 1990. Ergometry (exercise testing) of the bottlenose dolphin, in: S. Leatherwood (ed.), The Bottlenose Dolphin, pp. 559-574. Academic Press, San Diego.Google Scholar
  43. Gutmann, W. F. 1994. Konstruktionszwänge in der Evolution: schwimmende Vierfüsser. Nat. Mus. 124:165–188.Google Scholar
  44. Hickman, G. C. 1979. The mammalian tail: a review of functions. Mammal Rev. 9: 143–157.CrossRefGoogle Scholar
  45. Hoerner, S. F. 1965. Fluid-Dynamic Drag. Published by author, Brick Town, NJ.Google Scholar
  46. Howell, A. B. 1930. Aquatic Mammals. Thomas, Springfield, IL.Google Scholar
  47. Hurt, H. H., Jr. 1965. Aerodynamics for Naval Aviators. U.S. Navy, NAVWEPS 00-80T-80.Google Scholar
  48. Jenkins, F. A., Jr., and Goslow, G. E., Jr. 1983. The functional anatomy of the shoulder of the savannah monitor lizard (Varanus exanthematicus). J. Morphol. 175:195–216.CrossRefGoogle Scholar
  49. Karpouzian, G., Spedding, G., and Cheng, H. K. 1990. Lunate-tail swimming propulsion. Part 2. Performance analysis. J. Fluid Mech. 210:329–351.CrossRefGoogle Scholar
  50. Katz, J., and Weihs, D. 1978. Hydrodynamic propulsion by large amplitude oscillation of an airfoil with chordwise flexibility. J. Fluid Mech. 88:485–497.CrossRefGoogle Scholar
  51. Küchermann, D. 1953. The distribution of lift over the surface of swept wings. Aeronaut. Q. 4:261–278.Google Scholar
  52. Lang, T. G. 1966. Hydrodynamic analysis of cetacean performance, in: K. S. Noms (ed.), Whales, Dolphins and Porpoises, pp. 410–432. University of California Press, Berkeley.Google Scholar
  53. Lang, T. G., and Daybell, D. A. 1963. Porpoise performance tests in a seawater tank. NOTS Technical Publication 3063. Naval Ordnance Test Station, China Lake, CA. NAVWEPS Report 8060.Google Scholar
  54. Lauder, G. V. 1995. On the inference of function from structure, in: J. J. Thomason (ed.), Functional Morphology in Vertebrate Paleontology, pp. 1–18. Cambridge University Press, London.Google Scholar
  55. Lighthill, J. 1969. Hydrodynamics of aquatic animal propulsion—a survey. Annu. Rev. Fluid Mech. 1:413–446.CrossRefGoogle Scholar
  56. Lighthill, J. 1970. Aquatic animal propulsion of high hydromechanical efficiency. J. Fluid Mech. 44:265–301.CrossRefGoogle Scholar
  57. Lighthill, J. 1977. Introduction to scaling of aerial locomotion, in: T. J. Pedley (ed.), Scale Effects in Animal Locomotion, pp. 365–404. Academic Press, New York.Google Scholar
  58. Liu, P., and Bose, N. 1993. Propulsive performance of three naturally occurring oscillating propeller planforms. Ocean Eng. 20:57–75.CrossRefGoogle Scholar
  59. Long, J. H., Jr., Pabst, D. A., Shepherd, W. R., and McLellan, W. A. 1997. Locomotor design of dolphin vertebral columns: bending mechanics and morphology of Delphinus delphis. J. Exp. Biol. 200:65–81.PubMedGoogle Scholar
  60. Meyer, W., Neurand, K., and Klima, M. 1995. Prenatal development of the integument in Delphinidae (Cetacea: Odontoceti). J. Morphol. 223:269–287.PubMedCrossRefGoogle Scholar
  61. Motani, R., You, H., and McGowan, C. 1996. Eel-like swimming in the earliest ichthyosaurs. Nature 382:347–348.CrossRefGoogle Scholar
  62. Norris, K. S., and Prescott, J. H. 1961. Observations on Pacific cetaceans of California and Mexican waters. Univ. Calif. Publ. Zool. 63:291–402.Google Scholar
  63. O’Leary, M., and Rose, K. D. 1995. Postcranial skeleton of the early Eocene mesonychid Pachyaena. J. Vertebr. Paleontol. 15:401–430.CrossRefGoogle Scholar
  64. Pabst, D. A. 1990. Axial muscles and connective tissues of the bottlenose dolphin, in: S. Leatherwood and R. R. Reeves (eds.), The Bottlenose Dolphin, pp. 51–67. Academic Press, San Diego.Google Scholar
  65. Parry, D. A. 1949a. The swimming of whales and a discussion of Gray’s paradox. J. Exp. Biol. 26:24–34.PubMedGoogle Scholar
  66. Parry, D. A. 1949b. Anatomical basis of swimming in whales. Proc. Zool. Soc. London 119:49–60.CrossRefGoogle Scholar
  67. Perrin, W. F. 1975. Variation of spotted and spinner porpoise (genus Stenella) in eastern tropical Pacific and Hawaii. Bull. Scripps Inst. Oceanogr. No. 21.Google Scholar
  68. Perrin, W. F. 1997. Development and homologies of head stripes in the delphinoid cetaceans. Mar. Mamm. Sci. 13:1–43.CrossRefGoogle Scholar
  69. Purves, P. E. 1963. Locomotion in whales. Nature 197:334–337.CrossRefGoogle Scholar
  70. Purves, P. E. 1969. The structure of the flukes in relation to laminar flow in cetaceans. Z. Saeugetierkd. 34:1–8.Google Scholar
  71. Rayner, J. M. V. 1985. Vorticity and propulsion mechanics in swimming and flying animals, in: J. Riess and E. Frey (eds.), Konstruktionsprinzipen lebender und ausgestorbener Reptilien, pp. 89–118. University of Tubingen, Tubingen, Germany.Google Scholar
  72. Rice, D. W, and Wolman, A. A. 1971. The Life History and Ecology of the Gray Whale (Eschrichtius robustus). Am. Soc. Mamm. Spec. Publ. No. 3.Google Scholar
  73. Romanenko, E. V. 1995. Swimming of dolphins: experiments and modelling, in: C. P. Ellington and T. J. Pedley (eds.), Biological Fluid Dynamics, pp. 21–33. The Company of Biologists, Cambridge.Google Scholar
  74. Rommel, S. 1990. Osteology of the bottlenose dolphin, in: S. Leatherwood and R. R. Reeves (eds.), The Bottlenose Dolphin, pp. 29–49. Academic Press, San Diego.Google Scholar
  75. Rowe, T. 1996. Coevolution of the mammalian middle ear and neocortex. Science 273:651–654.PubMedCrossRefGoogle Scholar
  76. Ryder, J. A. 1885. On the development of the Cetacea, together with consideration of the probable homologies of the flukes of cetaceans and sirenians. Bull. U.S. Fish Comm. 5:427–485.Google Scholar
  77. Sanderson, I. T. 1956. Follow the Whale. Little, Brown, Boston.Google Scholar
  78. Slijper, E. J. 1961. Locomotion and locomotory organs in whales and dolphins (Cetacea). Symp. Zool. Soc. London 5:77–94.Google Scholar
  79. Slijper, E. J. 1979. Whales. Cornell University Press, Ithaca, NY.Google Scholar
  80. Smith, K. K. 1994. Are neuromotor systems conserved in evolution? Brain Behav. Evol. 43:293–305.PubMedCrossRefGoogle Scholar
  81. Strickler, T. L. 1980. The axial musculature of Pontoporia blainvillei, with comments on the organization of this system and its effect on fluke-stroke dynamics in the Cetacea. Am. J. Anat. 157:49–59.PubMedCrossRefGoogle Scholar
  82. Tarasoff, F. J., Bisaillon, A., Pierard, J., and Whitt, A. P. 1972. Locomotory patterns and external morphology of the river otter, sea otter, and harp seal (Mammalia). Can. J. Zool. 50:915–929.PubMedCrossRefGoogle Scholar
  83. Thewissen, J. G. M. 1994. Phylogenetic aspects of cetacean origins: a morphological perspective. J. Mamm. Evol. 2:157–184.CrossRefGoogle Scholar
  84. Thewissen, J. G. M, and Fish, F. E. 1997. Locomotor evolution the earliest cetaceans: functional model, modern analogues, and paleontological evidence. Paleobiology 23:482–490.Google Scholar
  85. Thewissen, J G. M, and Hussain, S. T. 1993. Origin of underwater hearing in whales. Nature 361:444–445.PubMedCrossRefGoogle Scholar
  86. Thewissen, J. G. M, Hussain, S. T., and Arif, M. 1994. Fossil evidence for the origin of aquatic locomotion in archaeocete whales. Science 263:210–212.PubMedCrossRefGoogle Scholar
  87. Thewissen, J. G. M, Madar, S. I., and Hussain, S. T. 1996a. Ambulocetus natans, an Eocene cetacean (Mammalia) from Pakistan. Cour. Forsck-Inst. Senckenberg 191:1–86.Google Scholar
  88. Thewissen, J. G. M., Roe, L. J., O’Neil, J. R., Hussain, S. T., Sahni, A., and Bajpal, S. 1996b. Evolution of cetacean osmoregulation. Nature 381:379–380.CrossRefGoogle Scholar
  89. Triantafyllou, M. S., and Triantafyllou, G. S. 1995. An efficient swimming machine. Sci. Am. 272:64–69.CrossRefGoogle Scholar
  90. van Dam, C. P. 1987. Efficiency characteristics of crescent-shaped wings and caudal fins. Nature 325:435–437.CrossRefGoogle Scholar
  91. Videler, J. 1993. Fish Swimming. Chapman & Hall, London.CrossRefGoogle Scholar
  92. Videler, J., and Kamermans, P. 1985. Differences between upstroke and downstroke in swimming dolphins. J. Exp. Biol. 119:265–274.PubMedGoogle Scholar
  93. Vogel, S. 1994. Life in Moving Fluids. Princeton University Press, Princeton, NJ.Google Scholar
  94. von Mises, R. 1945. Theory of Flight. Dover, New York.Google Scholar
  95. Watson, A. G., and Fordyce, R. E. 1993. Skeleton of two minke whales, Balaenoptera acutorostrata, stranded on the south-east coast of New Zealand. N. Z. Nat. Sci. 20:1–14.Google Scholar
  96. Webb, P. W. 1975. Hydrodynamics and energetics of fish propulsion. Bull. Fish. Res. Bd. Can. 190:1–158.Google Scholar
  97. Webb, P. W. 1984. Body form, locomotion and foraging in aquatic vertebrates. Am. Zool. 24:107–120.Google Scholar
  98. Webb, P. W., and Buffrénil, V. de. 1990. Locomotion in the biology of large aquatic vertebrates. Trans. Am. Fish. Soc. 119:629–641.CrossRefGoogle Scholar
  99. Weihs, D. 1989. Design features and mechanics of axial locomotion in fish. Am. Zool. 29:151–160.Google Scholar
  100. Weihs, D., and Webb, P. W. 1983. Optimization of locomotion, in: P. W. Webb and D. Weihs (eds.), Fish Biomechanics, pp. 339–371. Praeger, New York.Google Scholar
  101. Williams, T. M. 1983. Locomotion in the North American mink, a semi-aquatic mammal. I. Swimming energetics and body drag. J. Exp. Biol. 103:155–168.PubMedGoogle Scholar
  102. Williams, T. M. 1989. Swimming by sea otters: adaptations for low energetic cost locomotion. J. Comp. Physiol. A 164:815–824.PubMedCrossRefGoogle Scholar
  103. Wu, T. Y. 1971a. Hydrodynamics of swimming propulsion. Part 1. Swimming of a two-dimensional flexible plate at variable forward speeds in an inviscid fluid. J. Fluid Mech. 46:337–355.CrossRefGoogle Scholar
  104. Wu, T. Y. 1971b. Hydrodynamics of swimming propulsion. Part 2. Some optimum shape problems. J. Fluid Mech. 46:521–544.CrossRefGoogle Scholar
  105. Yanov, V. G. 1991. The systematic-functional organization of the kinematics of dolphin swimming. Rep. Acad. Sci. 317:1089–1093 (in Russian).Google Scholar
  106. Yates, G. T. 1983. Hydromechanics of body and caudal fin propulsion, in: P. W. Webb and D. Weihs (eds.), Fish Biomechanics, pp. 177–213. Praeger, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Frank E. Fish
    • 1
  1. 1.Department of BiologyWest Chester UniversityWest ChesterUSA

Personalised recommendations