A Photochemical Approach to Integrated Optics

  • E. Mendoza
  • S. Devi
  • D. Sunil
  • J. Dong
  • M. Rafailovich
  • J. Sokolov
  • R. Gambino
  • H. D. Gafney


Fiber optic technology attests to the advantages of glass with respect optical signal transmission. Thermal and chemical stability, band width, and a tolerance of high laser input powers are specific advantages of glass, but its refractory nature presents significant problems with respect to its application in emerging optical technologies. The refractory nature of glass precludes simple coupling techniques, and the temperatures required for glass processing, typically ≥1000°C, limit the reagents that can be incorporated into glass. New optical technologies, such as integrated optics, optoelectronics, magnetooptics, and optical chemical and biological sensors, require not only the development of new photonic materials, but also the methodologies to produce and incorporate optical elements in transparent media such as glass.1–8 The specifics of these methodologies will obviously depend on the device and its intended function, but all will require procedures capable of creating well resolved refractive index gradients to guide light, and equally well resolved patterns of electrically, magnetically, optically, or chemically addressable components.


Refractive Index Critical Angle Glass Matrix Porous Glass High Refractive Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miller, S. E. Bell System Technical journal 1969, 48, 2059.Google Scholar
  2. 2.
    Marcatili, E. A. J.; Miller, S. E. Bell System Technical journal 1969, 48, 2162.Google Scholar
  3. 3.
    Glass, A. M. Mater. Res. Soc. 1988, XII[8], 14.Google Scholar
  4. 4.
    Vogel, E. M. J. Am. Ceram. Soc. 1989, 72[5], 719.CrossRefGoogle Scholar
  5. 5.
    Smith, P. W., “Photonic Switching: Present Research and Future Prospects” Optical Computing and Nonlinear Materials, SPIE International Society for Optical Engineering, Bellingham, Wa., 1988, Vol. 881, p.30.Google Scholar
  6. 6.
    “Research on Nonlinear Optical Materials: An Assessment”, Appl. Opt. 1987, 26[2], 211.Google Scholar
  7. 7.
    Verber, CM., IEEE Proceedings, 1984, 72, 942.CrossRefGoogle Scholar
  8. 8.(a)
    Eaton, D. F. Science, 1991, 253, 281.CrossRefGoogle Scholar
  9. (b).
    “Symposium on Nonlinear Optics”, ACS Meeting, Boston, MA., April, 1990.Google Scholar
  10. 9.
    Safford, E. L. The Fiberoptics & Laser Handbook; Tab: Blue Ridge Summit, Pa., 1984; Chapter 1.Google Scholar
  11. 10.(a)
    Young, M. “Optics and Lasers”, 3rd ed., Springer-Verlag, New York, 1986, p. 218.Google Scholar
  12. (b).
    Morgan, J. “Introduction to Geometric and Physical Optics”, McGraw-Hill, New York, 1953, p.223–227.Google Scholar
  13. (c).
    Robertson, J. K. “Introduction to Optics: Geometrical and Physical”, 4th ed., Van Nostrand, New York, 1954, p. 178–182.Google Scholar
  14. 11.
    Borrelli, N.F.; Morse, D.L., U.S. Patent #4,403,031.Google Scholar
  15. 12.(a)
    Borrelli, N.F.; Morse, D.L., J. Appl. Phys., 1983, 43, 992.Google Scholar
  16. (b).
    Borrelli, N.F.; Morse, D.L; Scheurs, J.H., J. Appl. Phys., 1983, 54, 3344.CrossRefGoogle Scholar
  17. 13.
    Mendoza, E.; Gafney, HD. Conference on Inorganic Chemistry, Harvard University, Cambridge, MA., 1987.Google Scholar
  18. 14.(a)
    Mendoza, E.; Gafney, H.D. Symposium on Imaging, White Bear Lake, Mn., 1988.Google Scholar
  19. (b).
    Gafney, H.D. Macromolecular Conference III, Livingston, N. J., 1989.Google Scholar
  20. 15.
    Gafney, H. D. J. Macromol. Sci., Chem. 1990, A27 [9–11], 1187.Google Scholar
  21. 16.(a)
    Mendoza, E.A.; Gafney, H.D. “Photolithographic Processing of Integrated Optical Devices in Glasses” SPIE Proceedings in Integrated Optical Circuits, Boston, MA., 1991.Google Scholar
  22. (b).
    Mendoza, E.A.; Gafney, H.D. “The Photochemical Deposition of Nonlinear Optical Materials in Porous Glasses” International Symposium on Non-Linear Optical Materials, El Paso, TX. CRC Press, 1991.Google Scholar
  23. 17.
    Sunil, D.; Rafailovich, M.H.; Sokolov, J.; Gafney, H.D.; Hanson, A. Mater. Res. Soc. Symp. Proc. 1990, 168, 387.CrossRefGoogle Scholar
  24. 18.
    Gafney, H.D. J. Imag. Sci., 1989, 33, 37.Google Scholar
  25. 19.
    Mendoza, E. A.; Wolkow, E.; Sunhil, D.; Wong, P.; Sokolov, J.; Rafailovich, M; den Boer, M.; Gafney, H. D. Langmuir, 1991, 7, 3046.CrossRefGoogle Scholar
  26. 20.
    Wolkow, E.; Mendoza, E.; Gafney, H. D.; Hanson, A. L.; Wong, P., Mater. Res. Soc. Symp., 1990, 168, 381.CrossRefGoogle Scholar
  27. 21.
    Wolkow, E.; Mendoza, E.; Gafney, H. D.; Rafailovich, M.; Sokolov, J.; Hanson, A.; Wilkins, B. J.; DenBoer, M. L., Mater. Res. Soc. Symp. 1991, 169, 191.Google Scholar
  28. 22.
    Mendoza, E. A.; Gafney, H. D.; Morse, D. L. Proc. SPIE-Int. Soc. Opt. Eng. 1991, 1378, 139.CrossRefGoogle Scholar
  29. 23.
    Mendoza, E. A.; Gafney, H. D.; Morse, D. L. Proc. SPIE-Int. Soc. Opt. Eng., 1991, 1583, 43.CrossRefGoogle Scholar
  30. 24.
    Gafney, H.D. “Photochemistry of Metal Carbonyls Physisorbed on Porous Vycor Glass’ in “Photochemistry on Solid Surfaces” Matsuura, T.; Anpo, M., Ed., Elsevier, Amsterdam, 1989, p. 272.Google Scholar
  31. 25.
    Yukawa, Y. “Handbook of Organic Structural Analysis”, Benjamin, New York, 1965, pgs. 544-545.Google Scholar
  32. 26.
    Janowski, V.F.; Heyer, W., Z. für Chemie, 1979, 19, 1.CrossRefGoogle Scholar
  33. 27.
    Gafney, H.D.; Basu, A.; Clark, J.; Perettie, D. J. J. Phys. Chem., 1983, 87, 4532.CrossRefGoogle Scholar
  34. 28.
    Darsillo, M.S.; Gafney, H.D.; Paquette, M.S. J. Am. Chem. Soc. 1987, 109, 3275.CrossRefGoogle Scholar
  35. 29.
    Sunil, D.; Sokolov, J.; Rafailovich, M; Gafney, H. D. Inorg. Chem. 1993, 32, 4489.CrossRefGoogle Scholar
  36. 30.(a)
    Mendoza, E.A.; Wolkow, E.; Gafhey, H.D.; Sunil, D.; Rafailovich, M.; Sokolov, J.; Long, G.; Jemian, P. Appl. Phys. Lett., 1990, 57[3], 209.CrossRefGoogle Scholar
  37. (b).
    Wiltzius, P.; Bates, F.S.; Dierker, S.B.; Wignall, G.D. Phys. Rev. A, 1987, 36, 2991.CrossRefGoogle Scholar
  38. 31.
    Agamalian, M, private communication, 1994.Google Scholar
  39. 32.(a)
    Bradley, K. F.; Chen, S.-H.; Thiyagarajan, P. Phys. Rev. A., 1990, 42, 6015.CrossRefGoogle Scholar
  40. (b).
    Schaefer, D. W.; Bunker, B. C.; Wilcoxon, J. P. Phys. Rev. Let, 1987, 58, 284.CrossRefGoogle Scholar
  41. (c).
    Hohr, A.; Neumann, H. B.; Schmidt, P. W.; Pfeifer, P.; Avnir, D. Phys. Rev. B, 1990, 38, 1462.CrossRefGoogle Scholar
  42. (d).
    Levitz, P.; Ehert, G.; Sinha, S. K.; Drake, J. M. J. Chem. Phys., 1991, 95, 6151.CrossRefGoogle Scholar
  43. 33.
    Brinker, C. J.; Scherer, G. W.; “Sol-Gel Science The Physics and Chemistry of Sol-Gel Processing” Academic Press, San Diego, Ca., 1990, Chapter 9, p. 515.Google Scholar
  44. 34.
    Sunil, D.; Sokolov, J.; Rafailovich, M.; Kotyuhanski, B.; Wilkins, B. J.; Hanson, A. L.; Gafhey, H. D. J. Appl. Phys. 1993, 74, 3768.CrossRefGoogle Scholar
  45. 35.(a)
    Ziolo, R. F.; Giannelis, E. P.; Weinstein-O’Horo, M. P.; Ganguly, B. N.; Mehrotra, V.; Russell, M. W.; Huffman, D. R. Science, 1992, 257, 219.CrossRefGoogle Scholar
  46. (b).
    Ziolo, R. F.; Giannelis, E. P.; Weinstein, O’Horo, M. P.; Ganguly, B. N.; Mehrotra, V.; Russell, M. W.; Huffman, D. R. Chem. & Eng. News, 1990, 70, 20 (July 20, 1992).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • E. Mendoza
    • 1
  • S. Devi
    • 1
  • D. Sunil
    • 1
  • J. Dong
    • 1
  • M. Rafailovich
    • 2
  • J. Sokolov
    • 2
  • R. Gambino
    • 2
  • H. D. Gafney
    • 1
  1. 1.Department of Chemistry & BiochemistryCity University of New York, Queens CollegeFlushingUSA
  2. 2.Department of Materials Science and EngineeringState University of New York at Stony BrookStony BrookUSA

Personalised recommendations