Zirconia: A Review of a Super Ceramic

  • Ram Srinivasan
  • Burtron H. Davis

Abstract

Zirconium dioxide is an important industrial ceramics. The sol-gel chemistry of zirconia is intriguing. The preparation of hydrous zirconia and especially controlling the conditions to produce a particular crystal phase are complex. Disagreements in the phase transformations of crystalline phases in zirconia still exist. These factors which make zirconia a very important ceramic material are reviewed in this chapter.

Keywords

Crystallite Size Tetragonal Phase Monoclinic Phase Sulfated Zirconia Tetragonal Zirconia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. H. Heuer and M. Rühle, in “Advances in Ceramics”, Vol. 12, (N. C. Claussen, M. Rühle, and A. H. Heuer, eds.) Am. Ceram. Soc, Columbus, OH, 1984, pp 1-13.Google Scholar
  2. 2.
    T. K. Gupta, J. H. Bechtold, R. C. Kuznicki, L H. Cadoff, and B. R. Rossing, J. Mater. Sci., 12, 2421 (1977).CrossRefGoogle Scholar
  3. 3.
    R. C. Garvie, R. H. J. Hannink, and R. J. Pascoe, Nature, 258, 703 (1975).CrossRefGoogle Scholar
  4. 4.
    T. K. Gupta, J. Mater. Sci., 12, 2421 (1977).CrossRefGoogle Scholar
  5. 5.
    E. C. Subba Rao in “Advances in Ceramics”, Vol. 12, (N. C. Claussen, M. Rühle, and A. H. Heuer, eds.) Am. Ceram. Soc, Columbus, OH, 1984, pp 1-13.Google Scholar
  6. 6.
    T. K. Gupta, in “Fracture Mechanics of Ceramics”, Vol. 4 (R> C. bradt, D. P. H> Hasselman and F. F. Lange, eds.) Plenum Pub. Co., 1978, pp 877-889.Google Scholar
  7. 7.
    B. C. H. Steele, J. Drennan, R. K. Slotwinski, N. Bonanos, and E. P. Butler, in “Advances in Ceramics”, Vol. 3, Science and Technology of Zirconia, (A. H. Heuer and L W. Hobbs, eds.) Am. Ceram. Soc, Columbus, OH, 1981, pp 286-309.Google Scholar
  8. 8.
    E. M. Logothetis, in “Advances in Ceramics”, Vol. 3, Science and Technology of Zirconia, (A. H. Heuer and L W. Hobbs, eds.) Am. Ceram. Soc, Columbus, OH, 1981, pp 388-405.Google Scholar
  9. 9.
    H. S. Isaacs in “Advances in Ceramics”, Vol. 3, Science and Technology of Zirconia, (A. H. Heuer and L W. Hobbs, eds.) Am. Ceram. Soc, Columbus, OH, 1981, pp 406-418.Google Scholar
  10. 10.
    T. Yamaguchi, Y. Nakano, T. lizuka and K. Tanabe, Chem. Lett., 177 (1976).Google Scholar
  11. 11.
    Y. Nakano, T. lizuka, H. Hattori, and K. Tanabe, J. Catal., 57, 1 (1979).CrossRefGoogle Scholar
  12. 12.
    M. Y. Wen, I. Wender, and J. W. Tierney, Energy & Fuels, 4, 373 (1990).CrossRefGoogle Scholar
  13. 13.
    B. H. Davis. R. A. Keogh and R. Srinivasan, Catal. Today, 20, 219 (1994).CrossRefGoogle Scholar
  14. 14.
    K. Tanabe, Mat. Chem. & Phys., 13, 347 (1985).CrossRefGoogle Scholar
  15. 15.
    T. Yamaguchi and K. Tanabe, Mat. Chem. & Phys., 16, 67 (1986).CrossRefGoogle Scholar
  16. 16.
    R. Roy, Science, 238, 1644 (1987).CrossRefGoogle Scholar
  17. 17.
    A. J. Burggraaf and K. Keizer in “Inorganic Membranes. Synthesis, Characteristics, and Applications,” (R. R. Bhave, Ed.), Van Nostrand Reinhold, New York, 1991, p. 22.Google Scholar
  18. 18.
    B. H. Davis, Ph. D. thesis, University of Florida, Gainesville, Florida, 1965.Google Scholar
  19. 19.
    J. Livage and M. Henry in “Ultrafiltration Processing of Advanced Ceramics,” (J. D. Mackenzie and D. R. Ulrich, Eds.), John Wiley & Sons, New York, 1985.Google Scholar
  20. 20.
    D. W. Johnson, Jr., Am. Ceram. Soc. Bull., 64 [12], 1597 (1985).Google Scholar
  21. 21.
    T. A. Ring, MRS Bulletin, October 1/November 15, 1987, pg 34.Google Scholar
  22. 22.
    G. Onoda and J. Tover, J. Am. Ceram. Soc, C-64, 248 (1986).Google Scholar
  23. 23.
    H. Th. Rijnten in “Formation, Preparation and Properties of Hydrous Zirconia in Physical Chemistry and Aspects of Adsorbents and Catalysts”, (B. G. Linsen, ed.), Academic Press, 1970, pp 315-372.Google Scholar
  24. 24.
    C. F. Baes, Jr. and R. E. Mesmer, “The Hydrolysis of Cations”, Wiley, New York, 1976.Google Scholar
  25. 25.
    A. Clearfield and P. A. Vaughan, Acta Crystallogr., 9 (7), 555 (1956).CrossRefGoogle Scholar
  26. 26.
    K. A. Kraus and J. R. Dam in “The Transuranium Elements”, (G. T. Seaborg, J. J. Katz, and W. M. Manning, eds.), McGraw-Hill, New York, Vol. IV-14B, 1949, pp 466–478 and 528.Google Scholar
  27. 27.
    D. B. Copley and S. Y. Tyree, Jr., Inorg. Chem., 7 (7), 1472 (1968).CrossRefGoogle Scholar
  28. 28.
    I. A. Shek and T.V. Pevzner, Russ J. Inorg. Chem., 5 (10), 1119 (1960).Google Scholar
  29. 29.
    G. M. Muha and P. V. Vaughan, J. Chem. Phys., 33, 194 (1960).CrossRefGoogle Scholar
  30. 30.
    A. Clearfield, Inorg. Chem., 3 [1], 146 (1964).CrossRefGoogle Scholar
  31. 31.
    M. Adachi, K. Okuyama, S. Moon, N. Tohge, and Y. Kousaka, J. Mater. Sci., 24, 2275 (1989).CrossRefGoogle Scholar
  32. 32.
    B. Dubois, D. Ruffier, and P. Odier, J. Am. Ceram. Soc, 72 [4], 713 (1989).CrossRefGoogle Scholar
  33. 33.
    M. Visca and E. Matijevic, J. Colloid Interface Sci., 68 [2], 308 (1979).CrossRefGoogle Scholar
  34. 34.
    D. M. Roy, R. R. Neurgaonka, T. P. O’Holleran and R. Roy, Am. Ceram. Soc. Bull., 56 [11], 1023 (1977).Google Scholar
  35. 35.
    H. Ishizawa, O. Sakurai, N. Mitzutani, and M. Kato, Am. Ceram. Soc. Bull., 65 [10], 1399 (1986).Google Scholar
  36. 36.
    G. M. Hidy, “Aerosols-An Industrial and Environmental Science”, Academic Press, New York, 1984, pg. 141.Google Scholar
  37. 37.
    J.-Y. Kim, M. Inoue, Z. Kato, N. Uchida, K. Saito and K. Uematsu, J. Mater. Sci., 26, 2215 (1991).CrossRefGoogle Scholar
  38. 38.
    R. P. Denkewicz, Jr., K. S. Ten Huisen and J. H. Adair, J. Mater. Res., 5, 2698 (1990).CrossRefGoogle Scholar
  39. 39.
    B. H. Davis, J. Am. Ceram. Soc, 67 (8), C–168 (1984).CrossRefGoogle Scholar
  40. 40.
    R. Srinivasan, R. J. De Angelis and B. H. Davis, J. Mater. Res., 1, 583 (1986).CrossRefGoogle Scholar
  41. 41.
    R. Srinivasan, M. B. Harris, S. F. Simpson, R. J. De Angelis and B. H. Davis, J. Mater. Res., 3, 787 (1988).CrossRefGoogle Scholar
  42. 42.
    R. Srinivasan and B. H. Davis, Catal. Lett., 14, 165 (1992).CrossRefGoogle Scholar
  43. 43.
    E. D. Whitney, J. Am. Ceram. Soc, 53 (12), 697 (1970).CrossRefGoogle Scholar
  44. 44.
    R. C. Garvie, J. Phys. Chem., 69, 1238 (1965).CrossRefGoogle Scholar
  45. 45.
    R. C. Garvie, J. Phys. Chem., 82, 218 (1985).CrossRefGoogle Scholar
  46. 46.
    R. C. Garvie and M. V. Swain, J. Mater. Sci., 20, 1193 (1985).CrossRefGoogle Scholar
  47. 47.
    J. E. Bailey, D. Lewis, Z. M. Librant, and L. J. Porter, Trans. J. Brit. Ceramic Soc, 71 [1] 25–30 (1965).Google Scholar
  48. 48.
    Y. Murase and E. Kato, J. Am. Ceram. Soc, 66 [3] 196–200 (1983).CrossRefGoogle Scholar
  49. 49.
    A. H. Heuer and M. Ruhle, Acta Metall., 33, 2101 (1985).CrossRefGoogle Scholar
  50. 50.
    I. W. Chen and Y. H. Chiao, Acta Metall., 31, 1627 (1983).CrossRefGoogle Scholar
  51. 51.
    R. C. Garvie and M. F. Goss, J. Mater. Sci., 21, 1253 (1986).CrossRefGoogle Scholar
  52. 52.
    P. E. D. Morgan, J. Am. Ceram. Soc, 67, C–204 (1984).CrossRefGoogle Scholar
  53. 53.
    J. Livage, K. Doi, and C. Mazieres, J. Am. Ceram. Soc, 51 [6] 349–53 (1968).CrossRefGoogle Scholar
  54. 54.
    E. Tani, M. Yoshimura and S. Somiya, J. Am. Ceram. Soc, 66 [1] 11–14 (1983).CrossRefGoogle Scholar
  55. 55.
    T. Mitshuhashi, M. Ichiara and V. Tatsuki, J. Am. Ceram. Soc, 57, [2] 97–101 (1974).CrossRefGoogle Scholar
  56. 56.
    M. J. Torralvo, M. A. Alario and J. Soria, J. Catal., 86, 473–76 (1984).CrossRefGoogle Scholar
  57. 57.
    M. I. Osendi, J. S. Moya, C. J. Serna and J. Soria, J. Am. Ceram. Soc, 68 [3] 135–139 (1985).CrossRefGoogle Scholar
  58. 58.
    R. Srinivasan, B. H. Davis, L A. Rice and R. J. De Angelis, J. Mater. Sci., 27, 661 (1992).CrossRefGoogle Scholar
  59. 59.
    J. E. Bailey, Proc Roy. Soc London, Ser. A, A279, 395 (1964).Google Scholar
  60. 60.
    G. K. Bansal and A. H. Heuer, Acta Metall., 20 [11], 1281 (1972).CrossRefGoogle Scholar
  61. 61.
    G. K. Bansal and A. H. Heuer, Acte Metall., 22 [4], 409 (1974).CrossRefGoogle Scholar
  62. 62.
    R. Srinivasan, B. H. Davis, O. B. Cavin and C. R. Hubbard, J. Am. Ceram. Soc, 75 [5], 1217 (1992).CrossRefGoogle Scholar
  63. 63.
    R. Srinivasan, D. Taulbee and B. H. Davis, Catal. Lett., 9, 1 (1991).CrossRefGoogle Scholar
  64. 64.
    R. Srinivasan, L. Rice and B. H. Davis, J. Am. Ceram. Soc, 73 [11], 3528–3530 (1990).CrossRefGoogle Scholar
  65. 65.
    R. Srinivasan, C. R. Hubbard, O. B. Cavin and B. H. Davis, Chem. of Mater., 5, 27 (1993).CrossRefGoogle Scholar
  66. 66.
    J. P. Coughlin and E. G. King, J. Am. Chem. Soc, 72, [5], 2262 (1950).CrossRefGoogle Scholar
  67. 67.
    J. Adam and B. Cox, J. Nuclear Energy, A, 11, [1] 31 (1959).Google Scholar
  68. 68.
    L. T. Yuranova, L. N. Komissarava and V. E. Plyushchev, Russ. J. Inorg. Chem., (English Ed.) 7 [5], 546–548 (1962).Google Scholar
  69. 69.
    M. A. Blesa, A. J. G. Maroto, S. I. Passaggio, N. E. Figliolia, and G. Rigotti, J. Mater Sei, 20, 4601–4609 (1985).CrossRefGoogle Scholar
  70. 70.
    M. S. Scurrell, Appl. Catal, 34, 109 (1987).CrossRefGoogle Scholar
  71. 71.
    H. B. Weiser, “The Hydrous Oxides”, McGraw-Hill Book Co., New York, 1926, pp. 79.Google Scholar
  72. 72.
    J. Burwell, Jr., R. L Littlewood, A. B. Cardew, M. Pass, and C. T. H. Stoddart, J. Amer. Chem. Soc, 82, 6272 (1960).CrossRefGoogle Scholar
  73. 73.
    S. K. Bhattacharyya, V. S. Ramachandran, and J. C. Ghosh, Advances in Catalysis, 9, 114(1957).CrossRefGoogle Scholar
  74. 74.
    S. K. Bhattacharyya and V. S. Ramanchandran, Bull. Nat Inst Sci., 12, 23 (1959).Google Scholar
  75. 75.
    J. D. Carruthers, K. S. W. Sing, and J. Feenerty, Nature, 213, 66 (1967).CrossRefGoogle Scholar
  76. 76.
    M. Sorrentino, L Steinbrecher, and F. Hazel, J. Colloid. Interface Sci., 31 [3], 307 (1969).CrossRefGoogle Scholar
  77. 77.
    L N. Komissarova, Yu. P. Simanov, and Z. A. Vladimirova, Russ. J. Inorg. Chem., 5 [7] 687 (1960).Google Scholar
  78. 78.
    S. A. Selim and T. M. E. Akkard, J. Catal. Chem. Biotech., 27, 58 (1977).Google Scholar
  79. 79.
    M. J. Torralvo, J. Soria, and M. A. Alario, Materials Science Monogram, 10, 512 (1982).Google Scholar
  80. 80.
    R. Srinivasan and B. H. Davis, J. Colloid Interface Sci., 156, 400 (1993).CrossRefGoogle Scholar
  81. 81.
    B. H. Davis, Appl. Surf. Sci., 19, 200 (1984).CrossRefGoogle Scholar
  82. 82.
    A. Benedetti, G. Fagherazzi and F. Pinna, J. Am. Ceram. Soc, 72, 467 (1989).CrossRefGoogle Scholar
  83. 83.
    A. Benedetti, G. Fagherazzi, F. Pinna and S. Polizzi, J. Mater. Sci., 25, 1473 (1990).Google Scholar
  84. 84.
    V. G. Kermidas and W. B. White, J. Am. Ceram. Soc, 57, 22 (1974).CrossRefGoogle Scholar
  85. 85.
    C. H. Perry and D. W. Uu, J. Am. Ceram. Soc., 68, C–184 (1985).CrossRefGoogle Scholar
  86. 86.
    M. Ishigame and T. Sakurai, J. Am. Ceram. Soc, 60, 367 (1977).CrossRefGoogle Scholar
  87. 87.
    J. C. Hamilton and A. S. Nagelberg, J. Am. Ceram. Soc, 67, 686 (1984).CrossRefGoogle Scholar
  88. 88.
    R. E. Benner and A. S. Nagelberg, Thin Solid Films, 84, 89 (1981).CrossRefGoogle Scholar
  89. 89.
    C. M. Phillippi and K. S. Mazdiyasmi, J. Am. Ceram. Soc, 54, 254 (1971).CrossRefGoogle Scholar
  90. 90.
    B. E. Yoldas, J. Mater. Sci., 21, 1080 (1986).CrossRefGoogle Scholar
  91. 91.
    B. E. Yoldas, J. Mater. Sci., 12, 1203 (1977).CrossRefGoogle Scholar
  92. 92.
    B. E. Yoldas, J. Mater. Sci., 14, 1843 (1979).CrossRefGoogle Scholar
  93. 93.
    K. S. Mazdiyasni, C. T. Lynch, and J. S. Smith, J. Am. Ceram. Soc, 50, 532 (1967).CrossRefGoogle Scholar
  94. 94.
    D. C. Bradley, R. C. Mehrotra, J. D. Swanwick and W. Wardlaw, J. Chem. Soc, 73, 2025 (1953).CrossRefGoogle Scholar
  95. 95.
    A. Ayral, T. Assih, M. Abenoza, J. Phalippou, A. LeComte and A. Dauger, J. Mater. Sci., 25, 1268 (1990).Google Scholar
  96. 96.
    D. C. Bradley and D. G. Carter, Can. J. Chem., 39, 1434 (1961).CrossRefGoogle Scholar
  97. 97.
    D. C. Bradley and D. G. Carter, Can. J. Chem., 40, 15 (1962).CrossRefGoogle Scholar
  98. 98.
    D. C. Bradley, R. C. Mehrotra, and D. P. Gaur in “Metal Alkoxides”, Academic Press, New York, 1978, pp 10–36.Google Scholar
  99. 99.
    B. E. Yoldas, J. Noncrystalline Solids, 63, 145 (1984).CrossRefGoogle Scholar
  100. 100.
    K.-L Un and H.-C. Wang, J. Mater. Sci., 23, 3666 (1988).CrossRefGoogle Scholar
  101. 101.
    P. Papet, N. LeBars, J. F. Baumard, A. Lecomte and A. Dauger, J. Mater. Sci., 24, 3850(1989).CrossRefGoogle Scholar
  102. 102.
    C. Guizard, N. Cygankewiecz, A. Larbot and L. Cot, J. Non-Cryst. Solids, 82, 86, (1986).CrossRefGoogle Scholar
  103. 103.
    C. Guizard, N. Cygankewiecz, A. Larbot and L. Cot, Proc Brit. Ceramic Soc, 38, 263, (1986).Google Scholar
  104. 104.
    L Cot, C. Guizard and A. Larbot, Industrial Ceramics, 8, 143, (1988).Google Scholar
  105. 105.
    A. Larbot, J.-P. Fabre, C. Guizard and L. Cot, J. Am. Ceram. Soc, 74, 257, (1989).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Ram Srinivasan
    • 1
  • Burtron H. Davis
    • 1
  1. 1.Center for Applied Energy ResearchUniversity of KentuckyLexingtonUSA

Personalised recommendations