Precursors for the Chemical Vapor Deposition of Titanium Disulfide and Titanium Nitride Films

  • Charles H. Winter


The rational design of precursors to binary inorganic materials is enhanced by a detailed understanding of the path that leads to the final product. Chemical Vapor Deposition (CVD), in which gas phase species react to form a film on a surface, has evolved into a very attractive method to prepare thin films of early transition metal chalcogenides, pnictogenides, and carbides.1 Despite the wide use of CVD to fabricate thin films, very little is known about the chemical reactions that are involved in these processes. Recently, we initiated a research program with the goal of understanding ligand intermediates in CVD processes to the above mentioned materials.2 A significant goal was to assess the possible intermediacy of metalligand multiple bonded compounds in CVD processes, since such species have been widely proposed in film deposition mechanisms.3 Herein we describe our recent efforts to prepare precursors to titanium disulfide and titanium nitride films using CVD techniques.


Chemical Vapor Deposition Titanium Nitride Chemical Vapor Deposition Process Titanium Tetrachloride Chemical Vapor Deposition Reactor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    For leading references, see: (a) D.C. Smith, R.R. Rubiano, M.D. Healy, and R.W. Springer, Mater. Res. Soc. Symp. Proc. 282, 643 1993.CrossRefGoogle Scholar
  2. (b).
    T J. Groshens, C.K. Lowe-Ma, R.C. Scheri, and R.Z. Dalbey, Mater. Res. Soc. Symp. Proc. 282, 299 1993.CrossRefGoogle Scholar
  3. (c).
    R. Fix, R.G. Gordon, and D.M. Hoffman, Chem. Mater. 3, 1138 1991.CrossRefGoogle Scholar
  4. (d).
    R. Fix, R.G. Gordon, and D.M. Hoffman, Chem. Mater. 2, 235 1990.CrossRefGoogle Scholar
  5. (e).
    R. Fix, R.G. Gordon, and D.M. Hoffman, Mater. Res. Soc. Symp. Proc. 168, 357 1990.CrossRefGoogle Scholar
  6. (f).
    M. Bochmann, I. Hawkins, and L.M. Wilson, J. Chem. Soc, Chem. Commun. 344 1988.Google Scholar
  7. (g).
    G.S. Girolami, J.A. Jensen, D.M. Pollina, W.S. Williams, A.E. Kaloyeros, and C.M. Alloca, J. Am. Chem. Soc. 109, 1579 1987.CrossRefGoogle Scholar
  8. (h).
    S.R. Kurtz and R.G. Gordon, Thin Solid Films 140, 277 1986.CrossRefGoogle Scholar
  9. (2)(a).
    C.H. Winter, P.H. Sheridan, T.S. Lewkebandara, M.J. Heeg, and J.W. Proscia, J. Am. Chem. Soc. 114, 1095 1992.CrossRefGoogle Scholar
  10. (b).
    C.H. Winter, T.S. Lewkebandara, and J.W. Proscia, Chem. Mater. 4, 1144 1992.CrossRefGoogle Scholar
  11. (c).
    C.H. Winter, P.H. Sheridan, T.S. Lewkebandara, and J.W. Proscia, Mater. Res. Soc. Symp. Proc. 282, 293 1993.CrossRefGoogle Scholar
  12. (d).
    C.H. Winter, T.S. Lewkebandara, J.W. Proscia, and A.L. Rheingold, Inorg. Chem. 32, 3807 1993.CrossRefGoogle Scholar
  13. (e).
    J.W. Proscia, C.H. Winter, G.P. Reck, and G.G. Wen, Mater. Res. Soc. Symp. Proc. 283, 933 1993.CrossRefGoogle Scholar
  14. (f).
    C.H. Winter, T.S. Lewkebandara, J.W. Proscia, and A.L. Rheingold, Inorg. Chem. 33, 1227 1994.CrossRefGoogle Scholar
  15. (g).
    T.S. Lewkebandara and C.H. Winter, Angew. Chem., Adv. Mater. 6, 237 1994.CrossRefGoogle Scholar
  16. (h).
    C.H. Winter, K.C. Jayaratne, and J.W. Proscia, Mat. Res. Soc. Symp. Proc. 327, 103 1994.CrossRefGoogle Scholar
  17. (i).
    C.H. Winter, V.C. Viejo, and J.W. Proscia, Mat. Res. Soc. Symp. Proc. 327, 109 1994.CrossRefGoogle Scholar
  18. (j).
    T.S. Lewkebandara, P.H. Sheridan, M.J. Heeg, A.L. Rheingold, and C.H. Winter, Inorg. Chem. 33, in press 1994.Google Scholar
  19. (3).
    For example, see: (a) R. Fix, R.G. Gordon, and D.M. Hoffman, J. Am. Chem. Soc. 112, 7833 1990.CrossRefGoogle Scholar
  20. (b).
    M. Nandi, D. Rhubright, and A. Sen, Inorg. Chem. 29, 3066 1990.CrossRefGoogle Scholar
  21. (c).
    D.C. Bradley, Chem. Rev. 89, 1317 1989.CrossRefGoogle Scholar
  22. (4).
    For leading references to the use of TiS2 as cathodes in lithium batteries, see: Lithium Battery Technology; H.V. Venkatasetty, Ed.; Wiley-Interscience: New York, 1984. K. Kanehori, K. Matsumoto, K. Miyauchi, and T. Kudo, Solid State Ionics 9/10, 1445 1983.CrossRefGoogle Scholar
  23. M.S. Whittingham, Prog. Solid State Chem. 12, 41 1978.CrossRefGoogle Scholar
  24. J.A. Wilson, and D.A. Yoffe, Adv. Phys. 18, 193 1969.CrossRefGoogle Scholar
  25. B. Scrosati, Electrochim. Acta. 26, 1559 1981.CrossRefGoogle Scholar
  26. (5).
    CVD routes to TiS2 films: (a) K. Kanehori, F. Kirino, K. Miyauchi, and T. Kudo, J. Electrochem. Soc. 136, 1265 1989.CrossRefGoogle Scholar
  27. (b).
    S. Kikkawa, M. Miyazaki, and M. Koizumi, J. Mater. Res. 5, 2894 1990.CrossRefGoogle Scholar
  28. (c).
    K. Kanehori, Y. Ito, F. Kirino, K. Miyauchi, and T. Kudo, Solid State Ionics 18/19, 818 1986.CrossRefGoogle Scholar
  29. (d).
    D. Zehnder, C. Deshpandey, B. Dunn, and R.F. Bunshah, Solid State Ionics 18/19, 813 1986.CrossRefGoogle Scholar
  30. (e).
    Z. Ogumi, Y. Uchimoto, and Z.I. Takehara, J. Power Sources 26, 457 1989.CrossRefGoogle Scholar
  31. (f).
    Y. Kanemori, Z. Ogumi, and Z.I. Takehara, GS News Tech. Rep. 46, 21 1987.Google Scholar
  32. (g).
    H.S.W. Chang and D.M. Schleich, J. Solid State Chem. 100, 62 1992.CrossRefGoogle Scholar
  33. (6).
    For other routes to TiS2 films, see: G. Meunier, R. Dormoy, and A. Levasseur, Mater. Sci. Eng., B B3, 19 1989.CrossRefGoogle Scholar
  34. T. Uchida, Y. Fuji, and M. Wakihara, Proc.-Electrochem. Soc. 88, 401 1988.Google Scholar
  35. (7).
    For leading references, see: R.C. Bill, Wear 106, 283 1985. J. Newnham and K. Singh, Sci.Tech. Aerosp. Rep. 15, Abstr. No. N77-32323 1977.CrossRefGoogle Scholar
  36. A.M. Zuev and A.G. Klabakov, Tr., Chelyab. Politekh. Inst. 152, 127 1974. Chem. Abstr. 87, 120191f 1977.Google Scholar
  37. V. Hopkins and M. Campbell, Lubr. Eng. 33, 252 1977.Google Scholar
  38. B.D. McConnell, Natl. Bur. Stand. (U.S.) Spec. Publ. 452, 124 1976.Google Scholar
  39. (8).
    For a discussion of the semimetal versus semiconductor properties of TiS2, see: P.B. Perry, Phys. Rev. B 13, 5211 1976.CrossRefGoogle Scholar
  40. (9).
    L.E. Conroy and K.C. Park, Inorg. Chem. 7, 549 1968.Google Scholar
  41. (10).
    Handbook of Chemistry and Physics, D.R. Lide, Ed., CRC Press, Boca Raton, Florida, 1992–1993, Vol. 74, pp 4-109.Google Scholar
  42. (11)(a).
    B. Viard, M. Poulain, D. Grandjean, and J. Amaudrut, Inorg. Chem. 32, 347 1993.CrossRefGoogle Scholar
  43. (b).
    G. Maier, U. Siepp, and R. Boese, Tetrahedron Lett. 4515 1987.Google Scholar
  44. (c).
    M. Handlovic, D. Miklos, and M. Zikmund, Acta Crystallogr. B37, 811 1987.Google Scholar
  45. (12).
    K.B. Williams, O. Stewart, G.P. Reck, and J.W. Proscia, Mat. Res. Soc. Symp. Proc. 327, 121 1994.CrossRefGoogle Scholar
  46. (13).
    H. Mackle, Tetrahedron 19, 1159 1963. See also:.CrossRefGoogle Scholar
  47. J.A. Kerr, Chem. Rev. 66, 465 1966.CrossRefGoogle Scholar
  48. (14).
    Refractory Materials, edited by J.L. Margrave, Academic Press, New York, 1971.Google Scholar
  49. (15).
    R. Buhl, H.K. Pulker, and E. Moll, Thin Solid Films 80, 264 1981.CrossRefGoogle Scholar
  50. (16).
    For leading references, see: W.D. Münz, D. Hofmann, and K. Hartig, Thin Solid Films 96, 79 1982.CrossRefGoogle Scholar
  51. (17).
    For leading references, see: M. Erola, J. Keinonen, A. Antilla, and J. Koskinen, Solar Energy Mater. 12, 353 1985.CrossRefGoogle Scholar
  52. A. Schlegel, P. Wachtert, J.J. Nickl, and H. Lingg, J. Phys. C: Solid State Phys. 10, 4889, 1977.CrossRefGoogle Scholar
  53. (18).
    For leading references, see: C. Ernsberger, J. Nickerson, A. Miller, and K. Banks, J. Vac. Sci. Technol. A 3 2303 1985.Google Scholar
  54. M. Wittmer, B. Studet, and H. Melchior, J. Appl. Phys. 52, 5722 1981.CrossRefGoogle Scholar
  55. (19).
    For example, see: C.Y. Ting, J. Vac. Sci. Technol. 21, 14 1982.CrossRefGoogle Scholar
  56. (20).
    W. Schintlmeister, O. Pacher, and K. Pfaffinger, J. Electrochem. Soc. 123, 924 1976.CrossRefGoogle Scholar
  57. (21).
    For example, see: M. Wittmer, J. Vac. Sci. Technol. A 3, 1797 1985.CrossRefGoogle Scholar
  58. (22).
    K. Sugiyama, S. Pac, Y. Takahashi, and S. Motojima, J. Electrochem. Soc. 122, 1545 1975.CrossRefGoogle Scholar
  59. (23).
    R. Fix, R.G. Gordon, and D.M. Hoffman, Chem. Mater. 2, 235 1990.CrossRefGoogle Scholar
  60. (24).
    G.M. Brown, Inorg. Chem. 28, 3028 1989.CrossRefGoogle Scholar
  61. (25).
    K. Ikeda, M. Maeda, and Y. Aritta, Proc. Symp. VLSI Technol. 61 1990.Google Scholar
  62. (26).
    M.E. Gross and T. Siegrist, Inorg. Chem. 31, 4898 1992. For other recent attempts to prepare precursors, see:.CrossRefGoogle Scholar
  63. S.R. Drake, K.D. Sanderson, M.B. Hursthouse, and K.M.A. Malik, Polyhedron 13, 181 1994.CrossRefGoogle Scholar
  64. F. Laurent, O. Cyr-Athis, J.-P. Legros, R. Choukroun, and L. Valade, New J. Chem. 18, 575 1994.Google Scholar
  65. (27).
    A. Novak, Struct. Bonding (Berlin) 18, 177 1974.CrossRefGoogle Scholar
  66. (28).
    W.A. Nugent and J.M. Mayer, Metal-Ligand Multiple Bonds, Wiley Interscience, New York, 1988, pp 123–125.Google Scholar
  67. (29)(a).
    C.C. Amato, J.B. Hudson, and L.V. Interrante, Mater. Res. Soc. Symp. Proc. 168, 119 1990.CrossRefGoogle Scholar
  68. (b).
    L.V. Interrante, G.A. Sigel, M. Garbauskas, C. Hejna, and G.A. Slack, Inorg. Chem. 28, 252 1989.CrossRefGoogle Scholar
  69. (31).
    D.L. Thorn, W.A. Nugent, and R.L. Harlow, J. Am. Chem. Soc. 103, 357 1981.CrossRefGoogle Scholar
  70. (32).
    Y. Bai, H.W. Roesky, H.-G. Schmidt, and M. Noltemeyer, Z. Naturforsch. 47b, 603 1992.Google Scholar
  71. (33).
    C.T. Vroegop, J.H. Teuben, F. van Bolhuis, and J.G.M. van der Linden, J. Chem. Soc., Chem. Commun. 550 1983.Google Scholar
  72. (34).
    Z.Y. Chen and A.W. Castleman, J. Chem. Phys. 98, 231 1993.CrossRefGoogle Scholar
  73. (35).
    For examples of early transition metal nitride cage compounds, see: M.M.B. Holl and P.T. Wolczanski, J. Am. Chem. Soc. 114, 3854 1992.Google Scholar
  74. G.M. Brown and L. Maya, J. Am. Ceram. Soc. 71, 78 1988.CrossRefGoogle Scholar
  75. L. Maya, Inorg. Chem. 26, 1459 1987.CrossRefGoogle Scholar
  76. (36).
    Y. Saeki, R. Matsuzaki, A. Yajima, and M. Akiyama, Bull. Chem. Soc. Jpn. 55, 3193 1982.CrossRefGoogle Scholar
  77. P. Dunn, Aust. J. Chem. 13, 225 1960. J. Cueilleron and M. Charret, Bull. Soc. Chim. Fr. 802 1956.CrossRefGoogle Scholar
  78. M. Antler and A.W. Laubengayer, J. Am. Chem. Soc. 77, 5250 1955. G.W.A. Fowles and F.H. Pollard, J. Chem. Soc. 2588 1953.CrossRefGoogle Scholar
  79. (37).
    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York, 1986, pp 111–117.Google Scholar
  80. (38).
    A. Sherman, Jpn. J. Appl. Phys. 30, 3553 1991.CrossRefGoogle Scholar
  81. T. Akahori, A. Tahihara, and M. Tano, J. Appl. Phys. 30, 3553 1991.CrossRefGoogle Scholar
  82. (39).
    C.H. Winter, T.S. Lewkebandara, and A.L. Rheingold, manuscript in preparation.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Charles H. Winter
    • 1
  1. 1.Department of ChemistryWayne State UniversityDetroitUSA

Personalised recommendations