New Porous Structures from Layered Phosphonates

  • Abraham Clearfield
  • J. Don Wang
  • Ying Tian
  • Fred L. CampbellIII
  • Guang-Zhi Peng

Abstract

Porous compounds were obtained in the formation of zirconium biphenyldiphosphonate, Zr(O3PC6H4-C6H4 PO3). The compounds are layered with an interlayer separation of 13.8Å. The layers are cross-linked into a three dimensional structure by virtue of the phosphonic acid bonding across two adjacent layers. It would be expected that this compound would be non-porous since the distance between adjacent organic pillars (crosslinks) along the layers is 5.3Å. Three types of products were obtained, those with an average pore radius ≈25Å, those containing micropores as well as mesopoers of 20–25Å radius and products with only layer mesopores. Surface areas ranged from 100–400m2/g.

Porous compounds were also prepared from layered double hydroxides of general composition M(II)nM(III)(OH)2n+2x. Diphosphonic acids of the type H2O3P(C6H4)nPO3H2, n=1, 2, 3 were intercalated into the layered double hydroxides. Upon warming the intercalates, the phosphonate anions bonded to the layers cross-linking them into a three dimensional array with concomitant pore development.

Keywords

Layered Double Hydroxide Phosphonic Acid Zirconium Phosphate Inorganic Layer Average Pore Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.C. Sequeira and M.J. Hudson, eds. “Multifunctional Mesoporous Inorganic Solids,” Kluwer Academic Publ., The Netherlands (1993).Google Scholar
  2. 2.
    CT. Kresge, M.E. Leonwicz, WJ. Roth, J.C Vartuli, and J.S. Beck, Nature. 359:710 (1992).CrossRefGoogle Scholar
  3. J.S. Beck et al, J. Am. Chem. Soc. 114:10834 (1992).CrossRefGoogle Scholar
  4. 3.
    R. Burch, Ed., Special issue on pillared clays, Catalysis Today. 2 (1988).Google Scholar
  5. 4.
    T.J. Pinnavaia, Science. 220:365 (1983).CrossRefGoogle Scholar
  6. 5.
    A. Clearfield and M. Kuchenmeister in: “Supramolecular Architecture,” T. Bein, ed., A.C.S. Symp. Ser. 499, Wash., D.C (1992).Google Scholar
  7. 6.
    A. Clearfield, in: “Design of New Materials,” D.A. Cocke and A. Clearfield, eds., Plenum Press, New York (1986).Google Scholar
  8. 7.
    A. Clearfield and G.D. Smith, Inorg. Chem. 16:3311 (1977).CrossRefGoogle Scholar
  9. 8.
    M.B. Dines and P.M. DiGiacomo, Inorg. Chem. 20:92 (1981).CrossRefGoogle Scholar
  10. M.B. Dines, P.M. DiGiacomo, K.P. Callahan, P.C. Griffith, R.H. Lane, and R.E. Cooksey, in “Chemically Modified Surfaces in Catalysis and Eletrocatalysis,“ J. Miller, ed., American Chemical Society, Wash., D.C (1982). ACS Symp. Ser. No. 192, Ch. 13.Google Scholar
  11. M.B. Dines, R.E. Cooksey, P.C. Griffith, and R.H. Love, Inorg. Chem. 22:1003 (1983).CrossRefGoogle Scholar
  12. 9.
    F.L. Campbell, III, J.D. Wang, G.Z. Peng, Y. Tian, and A. Clearfield, Chem. Mater. submitted.Google Scholar
  13. 10.
    Linus Pauling. “The Nature of the Chemical Bond,” Cornell University Press, Ithaca, N.Y. (1948).Google Scholar
  14. 11.
    W.T. Reichle, Chemtech. 58 (1986).Google Scholar
  15. 12.
    R. Allmann, Chimia. 24:99 (1970).Google Scholar
  16. 13.
    G. Brown and M.C. Gastuche, Clay Miner. 7:193 (1967).CrossRefGoogle Scholar
  17. 14.
    S. Miyata and T. Kimura, Chem. Lett. Jpn. 843 (1973).Google Scholar
  18. 15.
    H. Kopka, K. Beneke, and G. Lagaly, Colloid Interface Sci. 123:427 (1988).CrossRefGoogle Scholar
  19. 16.
    A. Clearfield, M. Kieke, J. Kwan, J.L. Colon, and R-C Wang, J. Inch Phenom. Mol Recog.Chem. 11:361(1991).CrossRefGoogle Scholar
  20. 17.
    J. Wang, Y. Tian, R-C Wang, and A. Clearfield, Chem. Mater. 4:1276–1282 (1992).CrossRefGoogle Scholar
  21. 18.
    G. Alberti, U. Costantino, F. Marmottini, R. Vivani, and P. Zappelli, Angew. Chem. Int. Ed. Engl. 32:1357 (1993).CrossRefGoogle Scholar
  22. 19.
    G. Alberti, F. Marmottini, S. Murcia-Mascaros, and R. Vivani, Angew. Chem. Int. Ed. Engl. 33:1594 (1994).CrossRefGoogle Scholar
  23. G. Alberti, F. Marmottini, S. Murcia-Mascaros, and R. Vivani, Mater. Chem. Phys. 35:187 (1993).Google Scholar
  24. 20.
    A. Clearfield, R.H. Blessing, and J.A. Stynes, J. Inorg. Nucl. Chem. 30:2249 (1968).CrossRefGoogle Scholar
  25. 21.
    S. Yamanaka, Inorg. Chem. 15:2811 (1976).CrossRefGoogle Scholar
  26. S. Yamanaka, K. Sakamato, and M. Hattori, J. Phys. Chem. 88:2067 (1984).CrossRefGoogle Scholar
  27. 22.
    G. Alberti, M. Casciola, R. Vivani, and R.K. Biswas, Inorg. Chem. 32:4250 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Abraham Clearfield
    • 1
  • J. Don Wang
    • 1
  • Ying Tian
    • 1
  • Fred L. CampbellIII
    • 1
  • Guang-Zhi Peng
    • 1
  1. 1.Texas A & M UniversityCollege StationUSA

Personalised recommendations