Raman Spectra of Unconventional Superconductors

  • Eric Faulques


The aim of this article is to provide a short survey of recent Raman data collected on new oxides superconductors and organic superconductors. Contributions to this field have increased dramatically in the past years mainly because single crystals and thin films of excellent quality have become available and partly because the experimental spectra were greatly improved by the use of charge-coupled-device detectors. This chapter is restricted to vibrational studies and to variations of phonons with temperature and oxygen doping; our main concern is to show how the Raman lines are affected by these factors. The next section gives a brief description of the cuprate structures where the role of oxygen ordering for the physical properties in the model compound YBa2Cu3O7 is particularly emphasized. Section 3 is devoted to some fundamental aspects of Raman spectroscopy and to their application to high-Tc superconductors. Emphasis is on low-temperature vibrational spectra, rather than electronic contributions. Studies of oxygen isotope labeled materials and intercalation compounds are also included. Section 4 is more concerned with applied topics and focuses on the spectral study of the morphology of thin films: oxygen-disorder and oxygen underdoping are current issues in the field. The last section is a concise review of spectroscopic studies for another very fascinating class of materials: the organic superconductors (BEDT-TTF)2X and the MxC60 fullerides which are at present well documented in the literature.


Raman Spectrum Raman Spectroscopy Raman Line Apical Oxygen Oxygen Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.(a)
    H. Snaked, P.M. Keane, J.C. Rodriguez; F.F. Owen, R.L. Hitterman, J.D. Jorgensen. “Crystal Structures of the High-Tc Superconducting Copper-Oxides”, Physica C, Elsevier Science B.V., Amsterdam (1994).Google Scholar
  2. (b).
    Gerald Burns. “High Temperature Superconductivity, an Introduction”, Academic Press, New York (1992).Google Scholar
  3. (c).
    Michel Cyrot and Davor Pavuna. “Introduction to Superconductivity and High Tc Materials”, World Scientific, New York (1994).Google Scholar
  4. 2.
    RJ. Cava, Nature 346, 110 (1990).CrossRefGoogle Scholar
  5. 3.
    G. Collin, A.C. Audier, and R. Comès, J. Phys. France 49, 383 (1988).CrossRefGoogle Scholar
  6. 4.
    M.T. Béal-Monod, J. Phys. France 49, 103 (1988).CrossRefGoogle Scholar
  7. M.T. Béal-Monod, J. Phys. France 49, 295 (1988).CrossRefGoogle Scholar
  8. 5.
    C. Thomsen, Light scattering in high Tc superconductors, in: “Topics in Applied Physics V.68, Light Scattering in Solids”, M. Cardona and G. Guentherodt, eds., Springer-Verlag, Berlin (1991). references therein.Google Scholar
  9. C. Thomsen, Adv. Mat. 4, 341 (1992).CrossRefGoogle Scholar
  10. C. Thomsen and M. Cardona, Raman Scattering in High-Tc Superconductors, in: “Physical Properties of High-Temperature superconductors”, D.M. Ginsberg ed., World Scientific, Singapore (1990).Google Scholar
  11. 6.
    M. Cardona, Physica C185, 65 (1991).Google Scholar
  12. 7.
    D. de Fontaine, G. Ceder, and M. Asta, Nature 343, 544 (1990).CrossRefGoogle Scholar
  13. 8.
    R.P. Gupta and M. Gupta, Phys Rev. B44, 2739 (1991)Google Scholar
  14. 9.
    J. Reyes-Gasca, T. Krekels, G. van Tendeloo, J. van Landyt, S. Amelinckx, W.H. Bruggink, and H. Verweij, Physica C 159, 831 (1989).CrossRefGoogle Scholar
  15. 10.
    M. Ezrahni, L. Brohan, A.M. Marie, M. Mancini, and M. Ganne, EurJ.Solid State Inorg.Chem. 30, 19 (1993).Google Scholar
  16. 11.
    Z. Han, U. Helmersson, T.I. Selinder, and J.E. Sundgren, Phys Rev. B47, 3431 (1993).Google Scholar
  17. 12.
    J.D. Jorgensen, B.W. Veal, A.P. Paulikas, L.J. Nowicki, G.W. Crabtree, H. Claus, and W.K. Kwok, Phys Rev. B41, 1863 (1990).Google Scholar
  18. 13.
    In ref. 26, one reads that q is low in comparison to ki . This is not exactly true at the zone boundary. However, for a perfect crystal q is not exactly zero in Raman and this allows the identification of LO and TO modes.Google Scholar
  19. 14.
    W. Heitler, “The Quantum Theory of Radiation”, Oxford University Press, London (1954).Google Scholar
  20. M. Born and K. Huang, “Dynamical Theory of Crystal Lattices”, Clarendon Press, Oxford (1956).Google Scholar
  21. C.H. Henry, Phys. Rev. 137, 699 (1966). J.P. Buisson, Thèse de Doctorat d’Etat, Orsay (1979).CrossRefGoogle Scholar
  22. 15.
    U. Fano, Phys. Rev. 124, 1866 (1961).CrossRefGoogle Scholar
  23. F. Cerdeira, T.A. Fjedly, M. Cardona, Phys. Rev. B 8, 4734 (1973). See also the comprehensive review of Fred Pollack: Characterization of Semiconductors by Raman Spectroscopy, in “Analytical Raman Spectroscopy”, JeannetteCrossRefGoogle Scholar
  24. G. Grasselli and B J. Bulkin, eds., Chemical Analysis Series, Vol. 114, John Wyley & Sons, New York, (1991).Google Scholar
  25. 16.
    B. Friedl, C. Thomsen, and M. Cardona, Phys.Rev.LetL 65, 915 (1990).CrossRefGoogle Scholar
  26. D. Reznik, M.V. Klein, W.C. Lee, D.M. Ginsberg, and S-W. Cheong, Phys. Rev. B46, 11725 (1992).Google Scholar
  27. D. Reznik, A. Kotz, S.L. Cooper, M.V. Klein, W.C. Lee, and D.M. Ginsberg, Physica C185-189, 1029 (1991).Google Scholar
  28. 17.
    E. Faulques, G. Garz, C. Gonzalez, P. Molinié, and T.P. Nguyen, Physica C 235–240, 1037 (1994).Google Scholar
  29. 18.
    M.V. Klein, Electronic Raman Scattering, in “Light Scattering in Solids”, ed. M. Cardona, Springer-Verlag, Berlin (1975).Google Scholar
  30. M.K. Chen, E. Altendorf, J.C. Irwin, R. Liang, and W.N. Hardy, Phys. Rev. B 48, 10530 (1993).Google Scholar
  31. 19.
    A. Sacuto, Thèse de Doctorat, University of Paris VI (1992); A. Sacuto, M.A. Kanehisa, and O. Gorokov, J.Phys. Condens. Matter 6, 1057 (1994).CrossRefGoogle Scholar
  32. 20.
    see the following papers concerning the fabrication of thin films: (a) G. Garz, T. Schild, N. Bouadma, F.R. Ladan, P. Gabelotaud, and C. Gonzalez, Physica C235-240, 3061 (1994).Google Scholar
  33. (b).
    C. Gonzalez, E. Faulques, G. Garz, P. Gabelotaud, and J.P. Senateur, Physica C235-240, 667 (1994) and references therein.Google Scholar
  34. 21.
    The assignment was deduced from polarized light scattering experiments and lattice dynamical calculations using either shell-models applied to perfect and defective lattices or based on first-principles (ab-initio) models. See for example J. Humlicek, A.P. Litvinchuk, W. Kress, B. Lederle, C. Thomsen, M. Cardona, H-U. Habermaier, I.E. Trofimov, and W. König, Physica C206, 345 (1993).Google Scholar
  35. 22.
    M.V. Belousov, I.V. Ignat’ev, N.V. Orekhova, and V. Yu. Davydov, Sov. Phys. Solid State 34, 1500 (1992).Google Scholar
  36. 23.
    V.G. Mazurenko and V.S. Kortov, Phys. Solid State 35, 382 (1993).Google Scholar
  37. 24.
    R.E. Cohen, W.E. Pickett, and H. Krakauer, Phys.Rev.Lett. 64, 2575 (1990).CrossRefGoogle Scholar
  38. 25.
    see for example K.F. McCarty, J.Z. Liu, R.N. Shelton, and H.B. Radousky, Phys.Rev. B41, 8792 (1990).Google Scholar
  39. 26.
    E. Faulques and R.E. Russo, “Characterization of high temperature superconductors with Raman spectroscopy”, in Applications of Analytical Techniques to the Characterization of Materials, D.L. Perry ed., Plenum Press, New York (1992).Google Scholar
  40. H. Kuzmany, M. Matus, E. Faulques et al., Solid State Commun. 65, 1343 (1988).CrossRefGoogle Scholar
  41. 27.
    R. Zeyher and G. Zwicknagl, Z. Phys. B78, 175 (1990).CrossRefGoogle Scholar
  42. 28.
    T.P. Devereaux, A. Virosztek, A. Zawadowski, Phys. Rev. B51, 505 (1995).Google Scholar
  43. 29.
    E. Altendorf, X.K. Chen, J.C. Irwin, R. Liang, and W.N. Hardy, Phys Rev. B47, 8140 (1993).Google Scholar
  44. 30.
    C. Thomsen and M. Cardona, Physica C206, 137 (1993).Google Scholar
  45. 31.
    N. Pyka, W. Reichardt, L. Pinschovius, G. Engel, J. Rossat-Mignod, and J.Y. Henry, Phys.Rev.Lett. 70, 1457 (1993).CrossRefGoogle Scholar
  46. 32.
    B. Friedl, C. Thomsen, H.U. Habermaier, and M. Cardona, Solid State Commun. 81, 989 (1992).CrossRefGoogle Scholar
  47. 33.
    E. Faulques, P. Dupouy and S. Lefrant, J. Phys. 11, 901 (1991).Google Scholar
  48. 34.
    D.H. Leach, C. Thomsen, M. Cardona, L. Mihaly and C. Kendziora, Solid State Commun. 88, 457 (1993).CrossRefGoogle Scholar
  49. 35.
    T. Mertelj, D. Mihailovic, R.S. Liu, J.R. Cooper, I. Gameson, and P.P. Edwards, Physica C235-240, 1141 (1994).Google Scholar
  50. 36.
    M.C. Krantz, C. Thomsen, Hj. Mattausch, and M. Cardona, Phys. Rev. B50, 1165 (1994).Google Scholar
  51. 37.
    J.H. Nickel, D.E. Morris, and J.W. Ager, III, Phys. Rev. Lett. 70, 81 (1993).CrossRefGoogle Scholar
  52. 38.
    K. Conder, E. Kaldis, M. Maciejewski, K. A. Müller, and E.F. Steigmeier, Physica C210, 282 (1993).Google Scholar
  53. 39.
    J. Garcia Lopez, J.C. Cheang Wong, C. Ortega, J. Siejka, I. Trimaille, A. Sacuto, G. Linker and O. Meyer, Nucl. Instr. and Meth. B85, 462 (1994).Google Scholar
  54. 40.
    V.N. Denisov, C. Taliani, A.G. Mal’shukov, V.M. Burlakov, E. Schönherr, and G. Ruani, Phys.Rev. B48, 16714 (1993).Google Scholar
  55. 41.
    A.M. Oles and W. Grzelka, Phys.Rev. B44, 9531 (1991).Google Scholar
  56. 42.
    X.D. Xiang, S. McKernan, W.A. Vareka, A. Zettl, J.L. Corkill, T.W. Barbee III, and M.L. Cohen, Nature 348, 145 (1990)CrossRefGoogle Scholar
  57. 43.
    M. Mochida, Y. Koike, K. Sasaki, A. Fujiwara, T. Noji, and Y. Saito, Physica C212, 191 (1993).Google Scholar
  58. 44.
    Y. Koike, T. Okubo, A. Fujiwara, T. Noji, and Y. Saito, Solid State Commun. 79, 501 (1991).CrossRefGoogle Scholar
  59. 45.
    N. Kijima, R. Gronsky, X.D. Xiang, W.A. Vareka, A. Zettl, J.L. Corkill, and M.L. Cohen, Physica C181, 18 (1991).Google Scholar
  60. 46.
    X.D. Xiang, A. Zetü, W.A. Vareka, J.L. Corkill, T.W. Barbee III, and M.L. Cohen, Phys Rev. B43, 11496 (1991)Google Scholar
  61. 47.
    E. Faulques and R.E. Russo, Solid State Commun. 82, 531 (1992).CrossRefGoogle Scholar
  62. E. Faulques, P. Molinié, P. Berdahl, T.P. Nguyen, and J.L. Mansot, Physica C219, 297 (1994).Google Scholar
  63. E. Faulques and S. Lefrant, J. Physique C3 (Paris) 44, 337 (1983).Google Scholar
  64. E. Mulazzi, S. Lefrant, E. Perrin, and E. Faulques, Phys. Rev. B35, 3028 (1987).Google Scholar
  65. 48.
    H. J. Trodahl, D. Pooke, G.J. Gainsford and K. Kishio, Physica C213, 427 (1993).Google Scholar
  66. 49.
    P.V. Huong and A.L. Verma, Phys.Rev. B48, 1219 (1993).Google Scholar
  67. 50.
    T.P. Nguyen, E. Faulques, and P. Molinié, Phys. Rev. B 48, 12989 (1993).Google Scholar
  68. 51.
    E. Faulques, P. Mahot, M. Spiesser, T.P. Nguyen, G. Garz, C. Gonzalez, and P. Molinié, Phys. Rev. B 50, 1209 (1994).Google Scholar
  69. 52.
    L.S. Grigoryan, R. Kumar, S.K. Malik, R. Vijayaraghavan, K.S. Ajaykumar, M.D. Shastry, H.D. Bist, and S. Sathaiah, Physica C205, 296 (1993).Google Scholar
  70. S. Sathaiah, H.D. Bist, R.N. Soni, L.S. Grigoryan, K. Yakushi, Physica C235-240, 1185 (1994).Google Scholar
  71. 53.
    for instance x = 0.037ω3-11.555, from R. Feile, Physica C 159, 1 (1989).CrossRefGoogle Scholar
  72. 54.
    P.V. Huong, Physica C180, 128 (1991).Google Scholar
  73. 55.
    E. Sodtke and H. Münder, Appl. Phys. Lett. 60, 1630 (1992) which shows the usefulness of Raman scattering in the study of oxygen ordering in YBCO/PBCO thin films.CrossRefGoogle Scholar
  74. 56.
    G. Burns, F.H. Dacol, C. Feild, and F. Holtzberg, Solid State Commun. 77, 367 (1991).CrossRefGoogle Scholar
  75. G. Burns, F.H. Dacol, C. Feild, and F. Holtzberg, Solid State Commun. 75, 893 (1990).CrossRefGoogle Scholar
  76. 57.
    V.G. Hadjiev, C. Thomsen, J. Kircher, and M. Cardona, Phys Rev. B47, 9148 (1993).Google Scholar
  77. V.G. Hadjiev, C. Thomsen, A. Erb, G. Müller-Vogt, M.R. Koblischka, and M. Cardona, Solid State Commun. 80, 643 (1991).CrossRefGoogle Scholar
  78. L.V. Gasparov, V.D. Kulakovskii, V.B. Timofeev, and V. Ya. Sherman, Sov.Phys. JETP 73, 929 (1991).Google Scholar
  79. 58.
    M. Iliev, C. Thomsen, V. Hadjiev, and M. Cardona, Phys Rev. B47, 12341 (1993)Google Scholar
  80. 59.
    N. Dieckmann, A. Bock, and U. Merkt, Physica C 144, 35 (1995).CrossRefGoogle Scholar
  81. 60.
    H. Hagemann, H. Bill, W. Sadowski, E. Walker, and M. François, Solid State Commun. 73, 447 (1990).CrossRefGoogle Scholar
  82. 61.
    J.M. Williams, J.R. Ferraro, R.J. Thorn, K.D. Carlson, U. Geiser, H.H. Wang, A.M. Kini, and M.H. Whangbo, “Organic Superconductors”, Prentice-Hall, Englewoods Cliffs, New Jersey (1992).Google Scholar
  83. 62.
    “Organic Superconductivity”, edited by V.Z. Kresin and W.A. Little, Plenum Press, New York, (1990).Google Scholar
  84. 63.
    D. Jérome and HJ. Schultz, Adv. Phys. 31, 299 (1982).CrossRefGoogle Scholar
  85. 64.
    F. Creuzet, G. Creuzet, D. Jérome, D. Schweitzer, H.J. Keller, J. Physique Lett. 46, L1079 (1985).Google Scholar
  86. 65.
    Fullerenes: Synthesis, Properties, and Chemistry of Large Carbon Clusters, George S. Hammond and Valerie J. Kuck, Eds, ACS Symposium Series 481, (1992).Google Scholar
  87. 66.
    D. Jumeau, S. Lefrant, E. Faulques, and J.P. Buisson, J. Physique 44, 819 (1983).CrossRefGoogle Scholar
  88. 67.
    E. Faulques, W. Wallnöfer, and H. Kuzmany, J. Chem. Phys. 90, 7585 (1989).CrossRefGoogle Scholar
  89. 68.
    E. Faulques, J.P. Buisson, and S. Lefrant, Phys. Rev. B 52, 15039 (1995).CrossRefGoogle Scholar
  90. 69.
    E. Faulques, R.E. Russo, and D.L. Perry, Spectrochim. Acta A49, 975 (1993).Google Scholar
  91. 70.
    E. Faulques, R.E. Russo, and D.L. Perry, Spectrochim. Acta A50, 757 (1994).Google Scholar
  92. 71.
    E. Faulques, A. Leblanc, P. Molinié, M. Decoster, F. Conan, J.E. Guerchais, J. Sala-Pala, Spectrochim. Acta A51, 805 (1995).Google Scholar
  93. 72.
    R. Swietlik, D. Schweitzer, HJ. Keller, Phys. Rev. B 36, 6881 (1987).CrossRefGoogle Scholar
  94. 73.
    R. Zamboni, D. Schweitzer, H J. Keller, Solid State Commun. 73, 41 (1990).CrossRefGoogle Scholar
  95. 74.
    S. Sugai and G. Saito, Solid State Commun. 58, 759 (1985).CrossRefGoogle Scholar
  96. 75.
    S. Sugai, H. Mori, H. Yamochi and G. Saito, Phys. Rev. B 47, 14374 (1993).CrossRefGoogle Scholar
  97. 76.
    K.I. Pokhodnia, A. Graja, M. Weger, D. Schweitzer, Z.Phys. B90, 127 (1993).CrossRefGoogle Scholar
  98. 77.
    M.E. Kozlov, K.I. Pokhodnia, and A.A. Yurchenko, Spectrochim.Acta 43A, 323 (1987).Google Scholar
  99. 78.
    J.P. Buisson and S. Lefrant, Synthetic Metals, 57, 4654, (1993).CrossRefGoogle Scholar
  100. 79.
    P. Auban-Senzier, C. Bourbonnais, D. Jérome, C. Lenoir, P. Batail, E. Canadell, J.P. Buisson and S. Lefrant, J. Phys. I France 3, 871–885, (1993).CrossRefGoogle Scholar
  101. 80.
    E. Faulques, J.P. Buisson, C. Girault, P. Batail and S. Lefrant, SPIE’s 1996 International Symposium on Lasers and Integrated Optoelectronics, Spectroscopic Studies of Superconductors; Raman Spectroscopy, 27 January-2 February 1996, San José.Google Scholar
  102. 81.
    M. Dressel, J.E. Eldridge, J.M. Williams, and H.H. Wang, Physica C 203, 247 (1992).CrossRefGoogle Scholar
  103. 82.
    M. Meneghetti, R. Bozio, and C. Pecile, J. Physique 47, 1377 (1986)CrossRefGoogle Scholar
  104. 83.
    R. Swietlik, C. Garrigou-Lagrange, C. Sourisseau, G. Pages, and P. Delahès, J. Mater. Chem. 2, 857 (1992).CrossRefGoogle Scholar
  105. C. Garrigou-Lagrange, P. Delahès, V.M. Yartsev, J.L. Brousseau, R.M. Leblanc, Chem. Phys. Lett. 225, 297 (1994). P. Delahès and V.M. Yartsev, Electronic and Spectroscopic Properties of Conducting Langmuir-Blodgett Films, in “Spectroscopy of New Materials”, R.J.H. Clark, R.E. Hester ed., John Wiley & Sons, (1993).CrossRefGoogle Scholar
  106. 84.
    J.R. Ferraro, A.M. Kini, J. M. Williams P. Stout, Appl. Spectrosc. 48, 531 (1994); H. Hau Wang, J.R. Ferraro, J. M. Williams, U. Geiser, J. Schlueter, J. Chem.Soc., Chem. Commun., 1893 (1994).CrossRefGoogle Scholar
  107. 85.
    M. Kini, invited seminar, Institut des Matériaux de Nantes.Google Scholar
  108. 86.
    S. Lefrant, E. Faulques, C. Godon, J.P. Buisson, P. Auban-Senzier, D. Jérome, C. Fabre, A. Rassat, A. Zahab, J.M. Lambert, and P. Bernier, Synt. Metals 55-57, 3044 (1993) and references therein.CrossRefGoogle Scholar
  109. 87.
    M.S. Dresselhaus, G. Dresselhaus, and P.C. Eklund, J. Mat. Res. 8, 2054 (1993).CrossRefGoogle Scholar
  110. 88.
    “Le Carbone dans tous ses Etats”, P. Bernier and S. Lefrant, eds., Gordon and Breach, Paris, (1996).Google Scholar
  111. 89.
    E. Faulques, unpublished (1981). The LCAO bases for the symmetrical ion are σg = √/2 (p1z − p3z), σu = 1/2 (p1z+√2 p2z + P3z), σu* = 1/2 (p1z-√2p2z + P3z) (antibonding orbital), Àu = 1/2 (p1x + √2p2x + P3x), 1/2 (Ply + √2p2y + P3y), πu* = 1/2 (p1x − V2p2x + P3x), 1/2 (P1y − V2p2y + p3y), πg = √2/2 (p1x − P3X), √2/2 (p1y − p3y).Google Scholar
  112. 90.
    G. Pimentel, J. Chem. Phys. 19, 4 (1951).Google Scholar
  113. 91.
    J.P. Buisson and E. Faulques, private communication.Google Scholar
  114. 92.
    N.B. Colthup, L.H. Daly, S.E. Wiberley, “Introduction to Infrared and Raman Spectroscopy”, third edition, Academic Press, San Diego (1990).Google Scholar
  115. 93.
    D.B. Tanner, J. S. Miller, M.J. Rice, and J.J. Ritsko, Phys. Rev. B 21, 5831 (1980).CrossRefGoogle Scholar
  116. 94.
    M.E. Koslov and M. Tokumoto, Spectrochim. Acta 50A, 2271 (1994).Google Scholar
  117. 95.
    M.J. Rice, V.M. Yartsev, and C.S. Jacobsen, Phys. Rev. B 21, 3437 (1980).CrossRefGoogle Scholar
  118. 96.
    K. Kornelsen, J.E. Eldridge, H.H. Wang, J.M. Williams, Phys. Rev. B 44, 5235 (1991).CrossRefGoogle Scholar
  119. 97.
    A. Painelli, A. Girlando, C. Pecile, Solid State Commun. 52, 801 (1984).CrossRefGoogle Scholar
  120. 98.
    L. Barbedette, S. Lefrant, T. Yildirim, and J.E. Fischer, in “Physics and Chemistry of Fullerenes and Derivatives”, H. Kuzmany, J. Fink, M. Mehring, and S. Roth, eds.; World Scientific, Singapore (1995), and references therein.Google Scholar
  121. 99.
    S.H. Glarum, S.J. Duclos, R.C. Haddon, J. Am. Chem. Soc. 114, 1996 (1992).Google Scholar
  122. 100.
    T. Pichler, M. Matus, J. Kürti, H. Kuzmany, Phys. Rev. B 45, 13841 (1992).Google Scholar
  123. 101.
    G. Ruani, P. Guptasarma, C. Taliani, and J. Fischer, Physica C235-240, 2477 (1994).Google Scholar
  124. 102.
    G. Els, P. Lemmens, G. Güntherodt, H.P. Lang, V. Tommen-Geiser, H.J. Güntherodt, Physica C235–240, 2475 (1994).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Eric Faulques
    • 1
  1. 1.Laboratoire de Physique CristallineInstitut des Matériaux de NantesNantes CedexFrance

Personalised recommendations