Diastereomeric Discrimination: Structural Aspects

  • Edward J. Valente
  • Gerard Ruggiero
  • Christopher W. Miller
  • Jeffrey D. Zubkowski
  • Drake Eggleston


Study of crystal and molecular structures offers detailed pictures of intermolecular interactions in the solid state. These serve as exemplars for the understanding of intermolecular interactions in the disordered phases of the liquid state and solution. Properties and reactivity of chemical species and systems are axiomatically related to their structure. One of the most important and active areas of structural study concerns molecular complexation. The concept of structural complementarity underlies a wide range of chemical and biological topics embracing antigen-antibody interactions, enzyme-substrate and enzyme-inhibitor interactions, and host-guest relationships, many with potential and application among the separation sciences. One of the oldest of the physical separation methods with a history of practical exploitation is the use of diastereomeric complexes for (partial) resolution of enantiomeric mixtures (Pasteur, 1853). The traditional method takes advantage of the differential solubility of the complexes in an appropriately chosen solvent. Since the less-soluble phase separates from solution usually as a crystalline solid leaving the more-soluble phase in solution, the less-soluble phase is a molecular assembly with macroscopic properties palpably different from its diastereomeric relative. And so it is not surprising that together with the lower solubilities, one finds higher heats of solution, heats of fusion and fusion points for the less-soluble phases (Jacques, Collet & Wilen, 1981).


Differential Scanning Calorimeter Carboxylate Oxygen Mandelic Acid Quinoline Ring Fusion Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banfield, C and Rowland, M. Stereospecific high-pressure Chromatographic analysis of warfarin in plasma. Journal of Pharmaceutical Sciences, 72, 921–928 (1983).CrossRefGoogle Scholar
  2. Brock, C. P., Schweizer, W. B. and Dunitz, J. D. On the validity of Wallach’s rule. On the the density and stability of racemic crystals compared with their chiral counterparts. Journal of the American Chemical Society 115, 9811–20 (1991).CrossRefGoogle Scholar
  3. Bush, E. B. and Trager, W. F. High yield synthesis of warfarin and its phenolic metabolites new compounds. Journal of Pharmaceutical Sciences 72, 830–831 (1983).CrossRefGoogle Scholar
  4. Carter, O. L., McPhail, A. T. and Sim, G. A. Optically active organometallic compounds. Configuration of (−)−l, l’-dimethylferrocene-3-carboxylic acid through x-ray analysis of its quinidine salt. Journal of the Chemical Society Section A, 365-373 (1967).Google Scholar
  5. Carter, S. D. & Wallace, T. W. 2-Methoxy-6-methylbenzaldehyde and related compounds. Synthesis 1983, 999-1002.Google Scholar
  6. Cheng, C. C. Structure and sntimalarial activity of amionoalcohols and 2-(p-chlorophenyl)-2-(4-piperidyl)tetrahydrofuran. Journal of Pharmaceutical Sciences 60, 1596–1598 (1971).CrossRefGoogle Scholar
  7. Collet, A. and Jacques, J. Etude des melanges d’antipodes potiques. V.-Acides mandeliques substitues. No. 630. Bulletin de la Societe Chimique de France 12, 3330–3334 (1973).Google Scholar
  8. Dijkstra, G. D. H., Kellogg, R. M., Wynberg, H., Svendsen, J. S., Marko, L, and Sharpless, K. B. Conformational study of cinchona alkaloids. A combined NMR, molecular mechanics, and x-ray approach. Journal of the American Chemical Society 111, 8069–8076 (1989).CrossRefGoogle Scholar
  9. Doherty, R., Benson, W. R., Maienthal, M. and Stewart, J. McD. Crystal and molecular Structure of quinidine. Journal of Phamaceutical Sciences 67, 1698–1700 (1978).CrossRefGoogle Scholar
  10. Etter, M. C. Hydrogen bonds as design elements in organic chemistry. Journal of Physical Chemistry 95, 4601–4610 (1991).CrossRefGoogle Scholar
  11. Etter, M., MacDonald, J. C. and Bernstein, J. Graph-set analysis of hydrogen bond patterns. Acta Crystallographica B46, 256–262 (1990).Google Scholar
  12. Frydenvang, K., Hjelvan, G., Jensen, B. and Do Rosario, S. M. M. Structures of choline in different crystal surroundings. Acta Crystallographica B40, 280–288 (1984).Google Scholar
  13. Gilman, B. (-Editor) Mandelic acid, in “Organic Synthesis, Collective Volume I”, 2nd Ed. pp 336–340, Wiley, New York, NY (1956).Google Scholar
  14. Gould, R. O. and Walkinshaw, M. D. Molecular recognition in model crystal complexes: The resolution of D and L amino acids. Journal of the American Chemical Society 108, 7840–7842 (1984).CrossRefGoogle Scholar
  15. Gould, R. O. Kelly, R. and Walkinshaw, M. D. Asymmetric resolution and molecular recognition. Part 1. The crystal structure of N-benzoyl-L-alanyl-strychninium dihydrate. Journal of the Chemical Society Perkin Transaction II, 847-852 (1985).Google Scholar
  16. van der Haest, A. D. Wynberg, H., Leusen, F. J. J. and Bruggink, A. Toward a rational design of resolving agents. Part II. Correlation between resolution results and physical properties of diastereomeric salts. Recueil des Travaux Chimiques des Pays-Bas 109, 523–528 (1990).CrossRefGoogle Scholar
  17. Hiskey, C. F., Bullock, E., and Whitman, G. Spectrophotometric study of aqueous solutions of warfarin sodium. Journal of Pharmaceutical Sciences 51, 43–46 (1962).CrossRefGoogle Scholar
  18. Ikawa, M., Stahmann, M. A. & Link, K. P. Studies on 4-hydroxycoumarins. V. The condensation of α,β-unsaturated ketones with 4-hydroxycoumarin. Journal of Organic Chemistry 66, 902–906 (1944).Google Scholar
  19. Jaworski, C. and Hartung, W. H. Amino alcohols. XII. Optical isomers in the ephedrine series of compounds. Journal of Organic Chemistry 8, 494–504 (1943).Google Scholar
  20. Jacques, J., Collet, A. and Wilen, S. H. “Enantiomers, Racemates, and Resolutions”, John Wiley & Sons, New York, NY (1981).Google Scholar
  21. Jeffrey, G. A. & Saenger, W. (1991) “Hydrogen Bonding in Biological Structures”, Springer-Verlag, New York, NY.CrossRefGoogle Scholar
  22. Jeyaraj, G. L. and Porter, W. R. New method for the resolution of racemic warfarin and its analogues using low-pressure liquid chromatogrgaphy. Journal of Chromatography 315, 378–383 (1984).CrossRefGoogle Scholar
  23. Johnson, R. L. and Jones, L. A. Preparation of m-and p-substituted benzalacetones, 2-phenylcyclopropyl methyl ketones and benzylacetones. Journal of Chemical and Engineering Data 16, 112–115 (1971).CrossRefGoogle Scholar
  24. Leusen, F. J. J., BruinsSlot, H. J. B., Noordik, J. H., van der Haest, A. D. Wynberg, H., and Bruggink, A. Toward a rational design of resolving agents. Part IV. Crystal packing analyses and molecular mechanics calculations for five pairs of diastereomeric salts of ephedrine and a cyclic phosphoric acid. Recueil des Travaux Chimiques des Pays-Bas 111, 111–118 (1992).CrossRefGoogle Scholar
  25. Kachino S. and Masao H. Structure of quinidine, C20H24N2O2. Acta Crystallographica C39,310–312 (1983).Google Scholar
  26. Karle, I. and Karle, J. Anomalous dispersion of sulfur in quinidine sulfate (C20H25N2O2)2SO4.2H2O, implications for structure analysis. Proceedings of the National Academy of Sciences (U. S. A.) 78, 5938–41 (1981).CrossRefGoogle Scholar
  27. Oleksyn, B. J. The role of molecular geometry in the biological activity of cinchona alkaloids and related compounds, in “Molecular Structure and Biological Activity”. Elsevier Science Publishing Co., Inc., Amsterdam, The Netherlands, pp. 181-191(1982).Google Scholar
  28. O’Reilly, R. A. Studies of the optical enantiomorphs of warfarin in man. Clinical Pharmacological Therapeutics 16, 348–354 (1974)Google Scholar
  29. Pasteur, L. (Tartaric acids). Comptes Rendes Academie de Sciences 37, 162 (1853).Google Scholar
  30. Platt, L. O., Jr. Synthesis, resolution, and chiroptical properties of some 4’-substituted warfarins. Honors Essay, Oral Roberts University, Tulsa, OK (1987).Google Scholar
  31. Ruggiero, G., Thaggard, A. L., Valente, E. J., and Eggleston, D. S. Structural variations in 3,4-dihydro-2H-pyran ketals: Acyl and aryl warfarin derivatives. Acta Crystallographica B46, 629–637 (1990).Google Scholar
  32. Savell, Jr., V. H. Synthesis and spectroscopic properties of compounds related to warfarin. Honors Thesis, Mississippi College, Clinton, MS (1987).Google Scholar
  33. Sheldrick, G. M. “SHELXS-86”, Acta Crystallographica A46, 467–473 (1990).Google Scholar
  34. Stella, V. J., Mooney, K. G., and Pipkin, J. D. Dissolution and ionization of warfarin. Journal of Pharmaceutical Sciences 73, 946–948, (1984).CrossRefGoogle Scholar
  35. Sellers, E. M. Interaction of Warfarin Stereoisomers with human albumin. Pharmacology Research Communications 7, 331–336 (1975).CrossRefGoogle Scholar
  36. Trager, W. F., Lewis, R. J. and Garland, W. A. Mass Spectral Analysis in the Identification of Human Metabolites of Warfarin. Journal of Medicinal Chemistry 13, 1196–1204 (1970).CrossRefGoogle Scholar
  37. Trager, W. F. in “Drug Metabolism Concepts. ACS Symposium Series. No. 44”, D. M. Jerina, Ed., American Chemical Society, Washington DC, 1977, Chapter 5.Google Scholar
  38. Valente, E. J., Zubkowski, J. D., and Eggleston, D. S. Discrimination in resolving systems: ephedrine-mandelic acid. Chirality 4, 494–504 (1992).CrossRefGoogle Scholar
  39. Valente, E. J., Miller, C. W., Zubkowski, J. D., Shui, X. and Eggleston, D. S. Discrimination in resolving systems. II. Ephedrine-substituted mandelic acid. Chirality 7, 652–676 (1995).CrossRefGoogle Scholar
  40. West, B. D., Preis, S., Schroeder, C. H., and Link, K. P. Studies on the 4-Hydroxycoumarins. XVII. The resolution and absolute configuration of warfarin. Journal of the American Chemical Society 83, 2676–2679 (1961).CrossRefGoogle Scholar
  41. Westley, J. W., Evans, R. H. and Blount, J. F. Optical resolution of asymmetric amines by preferential crystallization of lasalocid salts. Journal of the American Chemcial Society 99, 6057 (1977).CrossRefGoogle Scholar
  42. Wheeler, C. R. and Trager, W. F. Absolute configuration of acenocoumarin. Journal of Medicinal Chemistry 22, 1122–1124 (1979).CrossRefGoogle Scholar
  43. Wheeler, C. R. Warfarin and phenprocoumon as probes to distinguish inducible forms of cytochrome P-450. Doctoral Dissertation, University of Washington, Seattle, WA (1980).Google Scholar
  44. Wilen, S. H. “Tables of Resolving Agents and Optical Resolutions”, University of Notre Dame Press, Notre Dame, Indiana (1972).Google Scholar
  45. Wynberg, H. Asymmetric catalysis by alkaloids. Topics in Stereochemistry 16, 87–129 (1986).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Edward J. Valente
    • 1
  • Gerard Ruggiero
    • 1
  • Christopher W. Miller
    • 1
  • Jeffrey D. Zubkowski
    • 2
  • Drake Eggleston
    • 3
  1. 1.Department of ChemistryMississippi CollegeClintonUSA
  2. 2.Department of ChemistryJackson State UniversityJacksonUSA
  3. 3.Department of Physical and Structural ChemistrySmithKline Beecham PharmaceuticalsKing of PrussiaUSA

Personalised recommendations