Material Attenuation and Efficiency Factors

  • Lester W. SchmerrJr.


The models of wave propagation described in previous chapters treated the underlying fluids and/or solids as perfect, nonattenuating media. Real materials however do exhibit attenuation that must be accounted for in any complete description of an ultrasonic measurement system. Since the processes that generate material attenuation are generally quite complex, we do not attempt to model those processes in detail. Instead we use a simple phenomenological attenuation model and detailed experimental measurements in an explicitly modeled calibration setup.


Attenuation Coefficient Efficiency Factor Wiener Filter Paraxial Approximation Calibration Setup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. M. M. Pinkerton. Nature 160 (1947) 128.CrossRefGoogle Scholar
  2. 2.
    I. S. Gradshteyn, and I. M. Ryzhik, Table of Integrals, Series, and Products, (Academic; New York, 1980).zbMATHGoogle Scholar
  3. 3.
    P. H. Rogers, and A. L. Van Buren. J. Acoust Soc. Am 55, (1974) 724.zbMATHCrossRefGoogle Scholar
  4. 4.
    A. S. Khimunin. Acustica 27, (1972) 173.Google Scholar
  5. 5.
    G. C. Benson, and O. Kiyohara. J. Acoust Soc. Am. 55, (1974) 184.CrossRefGoogle Scholar
  6. 6.
    X. M. Tang, M. N. Toksoz, and C. H. Cheng. J. Acoust Soc. Am. 87, (1990) 1894.CrossRefGoogle Scholar
  7. 7.
    C. H. Chen, and S. K. Sin. J. Acoust Soc. Am. 87, (1990) 976.CrossRefGoogle Scholar
  8. 8.
    X. M. Tang, M. N. Toksoz, P. Tarif, and R. H. Wilkens. J. Acoust. Soc. Am. 83 (1988) 453.CrossRefGoogle Scholar
  9. 9.
    A. B. Bhatia. Ultrasonic Absorption, (Dover; New York, 1967).Google Scholar
  10. 10.
    A. Sedov, and L. W. Schmerr. J. Acoust Soc. Am 86, (1989) 2000.CrossRefGoogle Scholar
  11. 11.
    D. H. Green, and H. F. Wang. J. Acoust Soc. Am 90 (1991) 2697.CrossRefGoogle Scholar
  12. 12.
    D. Cassereau, and D. Guyomar. J. Acoust Soc. Am. 84 (1988) 1073.CrossRefGoogle Scholar
  13. 13.
    D. Cassereau, and D. Guyomar. J. Acoust Soc. Am. 84 (1988) 1504.CrossRefGoogle Scholar
  14. 14.
    A. R. Davies. On the maximum likelihood regularization of Fredholm convolution equations of the first kind, in Treatment of Integral Equations by Numerical Means (C.T.H. Baker and G.F. Miller, eds.) (Academic; New York, 1982) pp. 95–105.Google Scholar

Suggested Reading

  1. T. L. Rhyne. J. Acoust Soc. Am 61 (1977) 318.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Lester W. SchmerrJr.
    • 1
  1. 1.Iowa State UniversityAmesUSA

Personalised recommendations