Advertisement

Abstract

One important use of models is developing methods to size unknown flaws from their measured response. Since naturally occurring flaws are typically irregular in shape, when sizing defects it is necessary to determine the degree to which we want to try to recover details of the flaw geometry.

Keywords

Flash Point Wave Speed Effective Radius Spherical Void Unknown Flaw 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. G. Silk, A. M. Stoneham, and J. A. G. Temple, Reliability of Non-Destructive Inspection (Adam Hilger, Bristol, UK, 1987).Google Scholar
  2. 2.
    A. Sedov and L. W. Schmerr, Wave Motion 8 (1986) 15.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    D. K. Hsu, J. H. Rose, and D. O. Thompson, J. Appl. Phys. 55 (1984) 162.CrossRefGoogle Scholar
  4. 4.
    D. K. Hsu, J. H. Rose, R. B. Thompson, and D. O. Thompson, J. Nondestr. Eval. 3 (1982) 183.CrossRefGoogle Scholar
  5. 5.
    D. O. Thompson, S. J. Wormley, and D. K. Hsu, Rev. Sci. Inst. 57 (1986) 3089.CrossRefGoogle Scholar
  6. 6.
    D. K. Hsu, D. O. Thompson, and S. J. Wormley, IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control UFFC-34 (1987) 508.CrossRefGoogle Scholar
  7. 7.
    L. W. Schmerr, A. Sedov, and C. P. Chiou, Res. Nondestr. Eval. 1 (1989) 77.Google Scholar
  8. 8.
    C. P. Chiou and L. W. Schmerr, J. Acoust. Soc. Am. 92 (1992) 435.CrossRefGoogle Scholar
  9. 9.
    J. H. Rose, R. K. Elsley, B. R. Tittman, V. V. Varadan, and V. K. Varadan, Inversion of ultrasonic scattering data, in Acoustic, Electromagnetic, and Elastic Wave Scattering—Focus on the T-Matrix Approach (V. K. Varadan and V. V. Varadan, eds.) (Pergamon, New York, 1980), pp. 605–14.Google Scholar
  10. 10.
    J. H. Rose, Pure Appl. Geophys. 131 (1989) 715.CrossRefGoogle Scholar
  11. 11.
    J. Yang and L. J. Bond, IEE Proc.-A 139 (1992) 45.Google Scholar
  12. 12.
    J. Yang and L. J. Bond, Errors in determining the flaw centroid by using area functions, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum, New York, 1992), 11 A, pp. 849–56.CrossRefGoogle Scholar
  13. 13.
    J. D. Young, Approximate image reconstruction from transient signature, in Acoustic, Electromagnetic, and Elastic Wave Scattering—Focus on the T-Matrix Approach (V. K. Varadan and V. V. Varadan, eds.) (Pergamon, New York, 1980), pp. 631–53.Google Scholar
  14. 14.
    E. M. Kennaugh and D. L. Moffatt, Proc. IEEE 53 (1965) 898.CrossRefGoogle Scholar
  15. 15.
    L. J. Bond, Ult. Int. Conf. Proc. (1989) 768.Google Scholar
  16. 16.
    S. J. Song, and L. W. Schmerr, Res. Nondestr. Eval. 4 (1992) 1.CrossRefGoogle Scholar
  17. 17.
    J. Krautkramer, Br. J. Appl. Phys. 19 (1959) 240.CrossRefGoogle Scholar
  18. 18.
    J. Krautkramer, Handbook on the Ultrasonic Examination of Welds (Welding Institute, Cambridge, UK, 1977).Google Scholar
  19. 19.
    H. J. Meyer, Mat. Eval 42 (1984) 793.Google Scholar
  20. 20.
    H. J. Meyer, Evaluation of Ultrasonic Signals (International Institute of Welding, Cambridge, UK, 1987).Google Scholar
  21. 21.
    G. J. Gruber, J. Nondestr. Eval. 1 (1980) 263.CrossRefGoogle Scholar
  22. 22.
    M. G. Silk, Sizing cracklike defects by ultrasonic means, in Research Techniques in Nondestructive Testing, vol. 2 (R. S. Sharpe, ed.) (Academic, 1977, Chap. 2).Google Scholar
  23. 23.
    M. G. Silk, British Journ. NDT 26 (1984) 208.Google Scholar
  24. 24.
    G. J. Gruber, G. J. Hendrix, and W. R. Schick, Mat. Eval. 42 (1984) 426.Google Scholar
  25. 25.
    J. P. Charlesworth, and J. A. G. Temple, Engineering Applications of Ultrasonic Time-of-Flight Diffraction (Research Studies, Somerset, UK, 1989).Google Scholar
  26. 26.
    J. D. Achenbach, A. Noms, and K. Viswanathan, Inversion of crack scattering data in the high-frequency domain, in Acoustic, Electromagnetic, and Elastic Wave Scattering—Focus on the T-Matrix Approach (V. K. Varadan and V. V. Varadan, eds.) (Pergamon, New York, 1980), pp. 591–604.Google Scholar
  27. 27.
    J. D. Achenbach, K. Viswanathan, and A. Norris, Wave Motion 1 (1979) 299.MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    A. Norris and J. D. Achenbach, Inversion of first arrival crack scattering data, Elastic Wave Scattering and Propagation (V. K. Varadan and V. V. Varadan, eds.) (Ann Arbor Science Publishers, Ann Arbor, MI, 1982), pp. 61–75.Google Scholar
  29. 29.
    J. Seydel, Ultrasonic synthetic aperture focusing techniques, in Research Techniques in Nondestructive Testing, vol. 6 (R. S. Sharpe, ed.) (Academic, London, 1982), pp. 49–106.Google Scholar
  30. 30.
    S. O. Harrold, Ultrasonic focusing techniques, in Research Techniques in Nondestructive Testing, vol. 6 (R. S. Sharpe, ed.) (Academic, London, 1982), pp. 49–106.Google Scholar
  31. 31.
    B. Grohs, O. A. Barbian, W Kappes, H. Paul, R. Licht, and F. W. Hoh, Mat. Eval. 40 (1982) 84.Google Scholar
  32. 32.
    B. P. Hildebrand and B. B. Brenden, An Introduction to Acoustical Holography (Plenum, New York, 1972).Google Scholar
  33. 33.
    C. F. Quate, A. Ataar, and H. K. Wickramasinghe, Proc. IEEE 67 (1979) 1092.CrossRefGoogle Scholar
  34. 34.
    J. H. Rose, Wave Motion 6 (1984) 149.MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    A. Sedov and L. W. Schmerr, SIAMI Appl. Math. 47 (1987) 1201.MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    V. G. Kogan, D. K. Hsu, and J. H. Rose, J. Nondestr. Eval 5 (1985) 57.CrossRefGoogle Scholar
  37. 37.
    S. J. Song and L. W. Schmerr, Nondestr. Test. Eval. 10 (1992) 97.CrossRefGoogle Scholar
  38. 38.
    C. P. Chiou and L. W. Schmerr, Nondestr. Test. Eval. 10 (1993) 167.CrossRefGoogle Scholar

Suggested Reading

  1. H. Zhang and L. J. Bond, Ultrasonics 27 (1989) 116.CrossRefGoogle Scholar
  2. C. Chaloner and L. J. Bond, IEE Proc.-A (1987) 257.Google Scholar
  3. K. C. Tarn, J. Nondestr. Eval 5 (1985) 95.CrossRefGoogle Scholar
  4. J. H. Rose and J. L. Opsal, Inverse Born approximation. Exact determination of the shape of convex voids, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum, New York, 1983), 2B, pp. 949–59.CrossRefGoogle Scholar
  5. R. B. Thompson, Status of implementation of the inverse Born algorithm, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum, New York, 1985), 4A, pp. 611–21.CrossRefGoogle Scholar
  6. R. B. Thompson, K. M. Lakin, and J. H. Rose, A comparison of the inverse Born and imaging techniques for flaw reconstruction, in 1981 Ultrasonics Symposium Proc. (IEEE, Piscataway, NJ, 1981), pp. 930-35.Google Scholar
  7. L. J. Bond, C. A. Chaloner, S. J. Wormley, S. P. Neal, and J. H. Rose, Recent advances in Born inversion (weak scatterers), in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum, New York, 1988), 7A, pp. 437–44.Google Scholar
  8. J. H. Rose and J. A. Krumhansl, J. Appl. Phys. 50 (1979) 2951.CrossRefGoogle Scholar
  9. R. B. Thompson and T. A. Gray, Range of applicability of inversion algorithms, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum, New York, 1982), 1, pp. 233–49.CrossRefGoogle Scholar
  10. F. Cohen-Tenoudji, G. Quentin, and B. R. Tittman, Elastic wave transformation, in Review of Progress in Quantitative Nondestructive Evaluation (D. O. Thompson and D. E. Chimenti, eds.) (Plenum, New York, 1982), 2B, pp. 961–74.Google Scholar
  11. L. Adler and J. D. Achenbach, J. Nondestr. Eval. 1 (1980) 87.CrossRefGoogle Scholar
  12. S. Golan, Materials Eval. 39 (1981) 166.Google Scholar
  13. D. Heinrich, K. H. Mayer, G. Muller, and W. Prestel, Nuclear Eng. and Design 112 (1989) 127.CrossRefGoogle Scholar
  14. C. F. Schueler, H. Lee, and G. Wade, IEEE Trans. Sonics and Ultrasonics SU-31 (1984) 195.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Lester W. SchmerrJr.
    • 1
  1. 1.Iowa State UniversityAmesUSA

Personalised recommendations