Flaw Scattering

  • Lester W. SchmerrJr.


When a beam of ultrasound interacts with a flaw in a material, additional scattered waves are generated by the flaw; these waves travel in all directions. The distribution of scattered waves of course, depends strongly on the geometric and material properties of the flaw. In this chapter we characterize scattering responses of flaws in terms of their far-field scattering amplitudes, and we describe both exact and approximate methods of calculating scattering amplitudes. The scattering amplitude is a quantity of fundamental interest, since as shown later this quantity completely characterizes the flaw response in an LTI model of an ultrasonic system.


Impulse Response Incident Wave Scattered Wave Born Approximation Incident Plane Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. H. Tan, J. Acoust. Soc. Am. 61 (1977) 928.zbMATHCrossRefGoogle Scholar
  2. 2.
    G. S. Kino, Acoustic Waves: Devices, Imaging, and Analog Signal Processing (Prentice-Hall, Englewood Cliffs, NJ, 1987).Google Scholar
  3. 3.
    J. E. Gubematis, E. Domany, J. A. Krumhansl, and M. Hubermann, J. Appl. Phys. 48 (1977) 2812.CrossRefGoogle Scholar
  4. 4.
    C. F. Ying and R. Truell, J. Appl. Phys. 27 (1956) 1086.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Y. H. Pao and C. C. Mow, J. Appl. Phys. 34 (1963) 493.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    V. V. Varadan, Y. Ma, Y. K. Varadan, and A. Lakhtakia, Scattering of waves by spheres and cylinders in, Field Representations and Introduction to Scattering, Chap. 5 (V. V. Varadan, A. Lakhtakia, and V. K. Varadan, eds.) (Elsevier Science, Amsterdam, 1991).Google Scholar
  7. 7.
    Y. H. Pao and C. C. Mow, Diffraction of Elastic Waves and Dynamic Stress Concentrations (Crane, Russak, and Co., New York, 1973).Google Scholar
  8. 8.
    N. Einspruch, E. Witterholt, and R. Truell, J. Appl. Phys. 31 (1960) 806.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    R. J. McBride and D. W. Kraft, J. Appl. Phys. 43 (1972) 4853.CrossRefGoogle Scholar
  10. 10.
    L. Knopoff, Geophysics 24 (1959) 209.MathSciNetCrossRefGoogle Scholar
  11. 11.
    P. M. Morse and H. Feshbach, Methods of Theoretical Physics, parts I and II (McGraw-Hill, New York, 1953).zbMATHGoogle Scholar
  12. 12.
    A. Sedov and L. W. Schmerr, SIAM J. App. Math. 47 (1987) 1201.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    G. T. Schuster, J. Acoust. Soc. Am. 77 (1985) 865.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    J. Dominguez, Boundary Elements in Dynamics (Elsevier, Amsterdam, 1994).Google Scholar
  15. 15.
    M. Kitahara, Boundary Integral Equation Methods in Eigenvalue Problems in Elastodynamics and Thin Plates, Studies in Applied Mechanics, vol. 10 (Elsevier, Amsterdam, 1985).zbMATHGoogle Scholar
  16. 16.
    L. J. Bond, M. Punjani, and N. Safari, Ultrasonic wave propagation and scattering using explicit finite difference methods, in Mathematical Modelling in Nondestructive Testing (M. Blakemore and G. A. Georgiou, eds.) (Clarendon, Oxford, UK, 1988).Google Scholar
  17. 17.
    R. Ludwig and W. Lord, IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control UFFC-35 (1988) 809.CrossRefGoogle Scholar
  18. 18.
    J. L. Opsal and W. M. Visscher, J. Appl. Phys. 58 (1985) 1102.CrossRefGoogle Scholar
  19. 19.
    V. K. Varadan and V. V. Varadan, eds., Acoustic, Electromagnetic, and Elastic Wave Scattering—Focus on the T-matrix Method (Pergamon, New York, 1980).Google Scholar
  20. 20.
    P. Fellinger and K. J. Langenberg. Numerical techniques for elastic wave propagation and scattering, in Elastic Waves Ultrasonic Nondestructive Evaluation (S. K. Datta, J. D. Achenbach, and Y. S. Rajapakse, eds.) (North Holland, Amsterdam, 1990).Google Scholar
  21. 21.
    J. J. Bowman, T. B. A. Senior, and P. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes (North Holland, New York, 1969).Google Scholar
  22. 22.
    P. M. Morse and K. Uno Ingard, Theoretical Acoustics (Princeton Univ. Press, Princeton, NJ, 1968).Google Scholar

Suggested Reading

  1. K. J. Langenberg and V. Schmitz, Nuclear Eng. and Design 94 (1986) 427.CrossRefGoogle Scholar
  2. D. M. Johnson, J. Acoust. Soc. Am. 59 (1976) 1319.CrossRefGoogle Scholar
  3. N. F. Haines and D. B. Langston, J. Acoust. Soc. Am. 67 (1980) 1443.zbMATHCrossRefGoogle Scholar
  4. W. G. Neubauer, J. Acoust. Soc. Am. 35 (1963) 279.CrossRefGoogle Scholar
  5. J. S. Avestas, The physical optics method in electromagnetic scattering, J. Math. Phys. 21 (1980) 290.MathSciNetCrossRefGoogle Scholar
  6. J. S. Avestas, IEEE Trans. Ant. Prop. AP-34 (1986) 1459.CrossRefGoogle Scholar
  7. J. A. Hudson and J. R. Heritage, Geophys. J. Royal Astron. Soc. 66 (1981) 221.zbMATHCrossRefGoogle Scholar
  8. J. E. Gubernatis, E. Domany, and J. A. Krumhansl, J. Appl. Phys. 48 (1977) 2804.CrossRefGoogle Scholar
  9. J. H. Rose and J. M. Richardson, J. NDE 3 (1982) 45.Google Scholar
  10. R. P. Kanwal, Computers and Structures 16 (1983) 471.zbMATHCrossRefGoogle Scholar
  11. D. Quak, A. T. deHoop, and H. J. Starn, J. Acoust. Soc. Am. 80 (1986) 1228.CrossRefGoogle Scholar
  12. V. V. Varatharajulu, J. Math. Phys. 18 (1977) 537.zbMATHCrossRefGoogle Scholar
  13. A. T. deHoop, J. Acoust. Soc. Am. 84 (1988) 1877.MathSciNetCrossRefGoogle Scholar
  14. N. Einspruch and R. Truell, J. Acoust. Soc. Am. 32 (1960) 214.MathSciNetCrossRefGoogle Scholar
  15. R. Truell, C. Elbaum, and B. B. Chick, Ultrasonic Methods in Solid-State Physics (Academic, New York, 1969).Google Scholar
  16. D. W. Kraft and M. Franzblau, J. Appl. Phys. 42 (1971) 3019.CrossRefGoogle Scholar
  17. L. Knopoff, Geophysics 24 (1959) 30.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Lester W. SchmerrJr.
    • 1
  1. 1.Iowa State UniversityAmesUSA

Personalised recommendations