Cytokine Regulation of Endothelial Cell Function

  • Alberto Mantovani
  • Paola Allavena
  • Annunciata Vecchi
  • Elisabetta Dejana
  • Silvano Sozzani
  • Martino Introna
Part of the NATO ASI Series book series (NSSA, volume 294)

Abstract

Endothelial cells (EC) have long considered a “passive” lining of blood vessels, endowed with negative properties, the most important one being that of representing a non-thrombogenic substrate for blood. As such, EC were viewed to participate in tissue reactions essentially as targets for injurious agents. The possibility of isolating and culturing EC from various tissues gave the tools for studying their complex reactions to a variety of activating stimuli. EC have, in this way emerged as active participants in many physiological and pathological processes. It is now evident that hemostasis, inflammatory reactions, and immunity involve close interactions between immunocompetent cells and vascular endothelium. In particular, the ontogeny and function of white blood cells require an intimate relationship with vascular EC. Cytokines are mediators of these complex bi-directional interactions between leukocytes and vascular elements (for review see Mantovani and Dejana, 1989, Mantovani, Bussolino, and Dejana, 1992).

Keywords

Nitric Oxide Endothelial Cell Human Umbilical Vein Endothelial Cell Hemolytic Uremic Syndrome Human Endothelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, Z., M.E. Gerritsen, W.W. Carley, R.M. Strieter, S.L. Kunkel, and J. Westwick. Chemokine gene expression and secretion by cytokine-activated human microvascular endothelial cells — Differential regulation of monocyte chemoattractant protein-1 and interleukin-8 in response to interferon-gamma. Am. J. Pathol., 145:913–921, 1994.PubMedGoogle Scholar
  2. Bussolino, F., M. Arese, L. Silvestro, R. Soldi, E. Benfanati, F. Sanavio, M. Aglietta, A. Bosia, and G. Camussi. Involvement of a serine protease in the synthesis of platelet-activating factor by endothelial cells stimulated by tumor necrosis factor-alpha or interleukin-1 alpha. Eur. J. Immunol., 24:3131–3139, 1994a.PubMedCrossRefGoogle Scholar
  3. Bussolino, F., E. Bocchietto, F. Silvagno, R. Soldi, M. Arese, and A. Mantovani. Actions of molecules which regulate hemopeiesis on endothelial cells: memoirs of common ancestors? Path. Res. Pract., 190:834–839, 1994b.PubMedCrossRefGoogle Scholar
  4. Bussolino, F., F. Silvagno, G. Garbarino, C. Costamagna, F. Sanavio, M. Arese, R. Soldi, M. Aglietta, G. Pescarmona, G. Camussi, et al. Human endothelial cells are targets for platelet-activating factor (PAF). Activation of alpha and beta protein kinase C isozymes in endothelial cells stimulated by PAF. J. Biol. Chem., 269:2877–2886, 1994c.PubMedGoogle Scholar
  5. Bussolino, F. And G. Camussi. Platelet-activating factor produced by endothelial cells. A molecule with autocrine and paracrine properties. Eur. J. Biochem., 229:327–337, 1995.PubMedCrossRefGoogle Scholar
  6. Calderon, T.M., J. Sherman, H. Wilkerson, V.B. Hatcher, and J.W. Berman. Interleukin 6 modulates c-sis gene expression in cultured human endothelial cells. Cell Immunol., 143:118–126, 1992.PubMedCrossRefGoogle Scholar
  7. Camacho, M., Godessart, R. Anton, M. Garcia, and L. Vila. Interleukin-1 enhances the ability of cultured human umbilical vein endothelial cells to oxidize linoleic acid. J. Biol. Chem., 270:17279–17286, 1995.PubMedCrossRefGoogle Scholar
  8. Cao, Y.H., Chen, J.A. Weatherbee, M. Tsang, and J. Folkman. gro-beta, a-C-X-C-chemokine, is an angiogenesis inhibitor that suppresses the growth of Lewis lung carcinoma in mice. J. Exp. Med., 182:2069–2077, 1995.PubMedCrossRefGoogle Scholar
  9. Carvalho, D., C.O.S. Savage, C.M. Blanck, and J.D. Pearson. IgG antiendothelial cell autoantibodies from scleroderma patients induce leukocyte adhesion to human vascular endothelial cells in vitro. J. Clin. Invest., 97:111–119, 1996.PubMedCrossRefGoogle Scholar
  10. Caverth, H.J., J.F. Bohnsack, T.M. McIntyre, M. Baggiolini, S.M. Prescott, and G.A. Zimmerman. Neutrophil activating factor (NAF) induces polymorphonuclear leukocyte adherence to endothelial cells and to subendothelial matrix proteins. Biochem. Biophys. Res. Comm., 162:387–393, 1989.CrossRefGoogle Scholar
  11. Chen, C.C. and A.M. Manning. TGF-beta 1, IL-10, and IL-4 differentially modulate the cytokine-induced expression of the IL-6 and IL-8 in human endothelial cells. Cytokine, 8:58–65, 1996.PubMedCrossRefGoogle Scholar
  12. Chirivi, R.G., M.I. Nicoletti, A. Remuzzi, and R. Giavazzi. Cytokines and cell adhesion molecules in tumor-endothelial cell interaction and metastasis. Cell Adhes. Commun., 2:219–224, 1994.PubMedCrossRefGoogle Scholar
  13. Chu, W., D.K. Burns, R.A. Swerlick, and D.H. Presky. Identification and characterization of a novel cytokine-inducible nuclear protein from human endothelial cells. J. Biol. Chem., 270:10236–10245, 1995.PubMedCrossRefGoogle Scholar
  14. Claria, J. and C.N. Serhan. Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions. Proc. Natl. Acad. Sci. USA, 92:9475–9479, 1995.PubMedCrossRefGoogle Scholar
  15. Clinton, S.K., J.C. Fleet, H. Loppnow, R.N. Salomon, B.D. Clark, J.G. Cannon, A.R. Shaw, C.A. Dinarello, and P. Libby. Interleukin-1 gene expression in rabbit vascular tissue in vivo. Am. J. Pathol., 138:1005–10014, 1991.PubMedGoogle Scholar
  16. Cobbs, C.S., J.E. Brenman, K.D. Aldape, D.S. Bredt, and M.A. Israel. Expression of nitric oxide synthase in human central nervous system tumors. Cancer Res., 55;727–730, 1995.PubMedGoogle Scholar
  17. Colotta, F., M. Sironi, A. Borre, W. Luini, F. Maddalena, and A. Mantovani. Interleukin 4 amplifies monocyte chemotactic protein and interleukin 6 production by endothelial cells. Cytokine, 4;24–28, 1992.PubMedCrossRefGoogle Scholar
  18. Colotta, F., F. Re, M. Muzio, R. Bertini, N. Polentarutti, M. Sironi, J.G. Giri, S.K. Dower, J.E. Sims, and A. Mantovani. Interleukin-1 type II receptor: a decoy target for IL-1 that is regulated by IL-4. Science, 261:472–475, 1993a.PubMedCrossRefGoogle Scholar
  19. Colotta, F., M. Sironi, A. Borre, T. Pollicino, S. Bernasconi, D. Boraschi, and A. Mantovani. Type II interleukin-1 receptor is not expressed in cultured edothelial cells and is not involved in endothelial cell activation. Blood, 81:1347–1357, 1993b.PubMedGoogle Scholar
  20. Colotta, F., F.L. Sciacca, M. Sironi, W. Luini, M.J. Rabiet, and A. Mantovani. Expression of monocyte chemotactic protein-1 by monocytes and endothelial cells exposed to thrombin. Am. J. Pathol., 144:975–985, 1994.PubMedGoogle Scholar
  21. Colotta, F., S. Orlando, E.J. Fadlon, S. Sozzani, C. Matteucci, and A. Mantovani. Chemoattractants induce rapid release of the interleukin 1 type II decoy receptor in human polymorphonuclear cells. J. Exp. Med., 181:2181–2188,1995.PubMedCrossRefGoogle Scholar
  22. Coulpier, M., S. Andreev, C. Lemercier, H. Dauchel, O. Lees, M. Fontaine, and J. Ripoche. Activation of the endothelium by IL-1 alpha and glucocorticoids results in major increase of complement C3 and factor B production and generation of C3a. Clin. Exp. Immunol, 101:142–149, 1995.PubMedCrossRefGoogle Scholar
  23. Cushing, S.D., J.A. Berliner, A.J. Valente, M.C. Territo, M. Navab. F. Parhami, R. Gerrity, C.J. Schwartz, and A.M. Fogelman. Minimally modified low density lipoprotein induces monocyte chemtactic protein 1 in human endothelial cells and smooth muscle cells. Proc. Natl. Acad. Sci. USA, 87:5134–5138, 1990.PubMedCrossRefGoogle Scholar
  24. d’Aniello, E.M., F. Brevario, I. Martin Padura, M.G. Lampugnani, E. Dejana, A. Mantovani, and M. Introna. Interleukin-1 and tumor necrosis factor induce transient expression of an inhibitor of nuclear factor kB in endothelial cells. Endothlelium, 1:161–165, 1993.CrossRefGoogle Scholar
  25. De Caterina, R., P. Libby, H.B. Peng, V.J. Thannickal, T.B. Rajavashisth, M.A.J. Gimbrone, W.S. Shin, and J.K. Liao. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectivity reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J. Clin. Invest., 96:60–68, 1995.PubMedCrossRefGoogle Scholar
  26. de Martin, R., B. Vanhove, Q. Cheng, E. Hofer, V. Csizmadia, H. Winkler, and F.H. Bach. Cytokine-inducible expression in endothelial cells of and I kappa B alpha-like gene is regulated by NF kappa B. EMBO J., 12;2773–2779, 1993.PubMedGoogle Scholar
  27. Debeaux, A.C., J.P. Maingay, J.A. Ross, K.C.H. Fearon, and D.C. Carter. Interleukin-4 and interleukin-10 increase endotoxin-stimulated human umbilical vein endothelial cell interleukin-8 release. J. Interferon. Cytokine Res., 15:441–445, 1995.CrossRefGoogle Scholar
  28. Del Papa, N., L. Guidali, M. Sironi, Y. Shoenfeld, A. Mantovani, A. Tincani, G. Balestrier, A. Radice, R.A. Sinico, and P.L. Meroni. Anti-endothelial IgG antibodies from Wegener’s granulomatosis bind to endothelial cells in vitro and induce adhesion molecule expression and cytokine secretion. Arthritis Rheum, (In Press).Google Scholar
  29. Devergne, O., A. Marfaingkoka, T.J. Schall, M.B. Legerravet, M. Sadick, M. Peuchmaur, M.C. Crevon, K.J. Kim, P. Galanaud, and D. Emilie. Production of the RANTES chemokine in delayed-type hypersensitivity reactions: Involvement of macrophages and endothelial cells (vol 180, pg 1689, 1994), J. Exp. Med., 180:775, 1994.Google Scholar
  30. Dickson, K., A. Philip, H. Warshawsky, M. O’Connor McCourt, and J.J. Bergeron. Specific binding of endocrine transforming growth factor-beta 1 to vascular endothelium. J. Clin. Invest., 95:2539–2554, 1995.PubMedCrossRefGoogle Scholar
  31. Dixit, V.M., S. Green, V. Sarma, L.B. Holzman, F.W. Wolf, K. O’Rourke, P.A. Ward, E.V. Prochownik, and R.M. Marks. Tumor necrosis factor-alpha induction of novel gene products in human endothelial cells including a macrophage-specific chemotaxin. J. Biol Chem., 265:2973–2978, 1990.PubMedGoogle Scholar
  32. Eissner, G., F. Kohlhuber, M. Grell, M. Ueffing, P. Scheurich, A. Hieke, G. Multhoff, G.M. Bornkamm, and E. Holler. Critical involvement of transmembrane tumor necrosis factor-alpha in endothelial programmed cell death mediated by ionizing radiation and bacterial endoxin. Blood, 86:4184–4193, 1995.PubMedGoogle Scholar
  33. Emsley, J., H.E. White, B.P. O’Hara, G. Oliva, N. Srinivasan, I.J. Tickle, T.L. Blundell, M.B. Pepys, and S.P. Wood. Structure of pentameric human serum amyloid P component. Nature, 367:338–345, 1994.PubMedCrossRefGoogle Scholar
  34. Ezekowitz, R.A., J.B. Mulliken, and J. Folkman. Interferon alfa-2a therapy for life-threatening hemangiomas of infancy [see comments] [published errata appear in N. Engl. J. Med., 1994, Jan 27:330(4):300 and 1995 Aug 31:333(9):595–6]. N. Engl. J. Med, 326:1456–1463, 1992.PubMedCrossRefGoogle Scholar
  35. Fan, J., H.Z. Bass, and J.L. Fahey. Elevated IFN-gamma and decreased IL-2 gene expression are associated with HIV infection. J. Immunol., 151:5031–5040, 1993.PubMedGoogle Scholar
  36. Fan, S.T., K. Hsia, and T.S. Edgington. Upregulation of human immunodeficiency virus-1 in chronically infected monocytic cell line by both contact with endothelial cells and cytokines. Blood, 84:1567–1572, 1994.PubMedGoogle Scholar
  37. Faruqi, R., C. de la Motte, and P.E. DiCorleto. Alpha-tocopherol inhibits agonist-induced monocytic cell adhesion to cultured human endothelial cells. J. Clin. Invest., 94:592–600, 1994.PubMedCrossRefGoogle Scholar
  38. Fauci, A.S., B.F. Haynes, and P. Katz. The spectrum of vasculitis. Ann. Intern. Med., 89(Part 1):660–676, 1978.PubMedCrossRefGoogle Scholar
  39. Fiorelli, V., R. Gendelman, F. Samaniego, P.D. Markham, and B. Ensoli. Cytokines from activated T cells induce normal endothelial cells to acquire the phenotypic and functional features of AIDS-Kaposi’s sarcoma spindle cells. J. Clin. Invest., 95:1723–1734, 1995.PubMedCrossRefGoogle Scholar
  40. Fossiez, F., O. Djossou, P. Chomarat, L. Flores-Romo, S. Ait-Yahia, C. Maat, J.J. Pin, P. Garrone, E. Garcia, S. Saelalnd, D. Blanchard, C. Gaillard, B.D. Mahapatra, E. Rouvier, P. Goldstein, J. Banchereau, and S. Lebecque. T-cell IL-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J. Exp. Med., (In Press).Google Scholar
  41. Fukuo, K., T. Inoue, S. Morimoto, T. Nakaashi, O. Yasuda, S. Kitano, R. Sasada, and T. Ogihara. Nitric oxide mediates cytotoxicity and basic fibroblast growth factor release in cultured vascular smooth muscle cells. A possible mechanism of neovascularization in atherosclerotic plaques. J. Clin. Invest., 95:669–676, 1995.PubMedCrossRefGoogle Scholar
  42. Galea, P., G. Thibault, M. Lacord, P. Bardos, and Y. Lebranchu. IL-4, but not tumor necrosis factor-alpha, increases endothelial cell adhesiveness for lymphocytes by activating a cAMP-dependent pathway. J. Immunol., 151:588–596,1993.PubMedGoogle Scholar
  43. Gamble, J.R. and M.A. Vadas. Endothelial cell adhesiveness for human T lymphocytes is inhibited by transforming growth factor beta-1. J. lmmunol., 146:1149–1154, 1991.Google Scholar
  44. Ghersa, P., R. Hooft van Huijsduijnen, J. Whelan, Y. Cambet, R. Pescini, and J.F. DeLamarter. Inhibition of E-selectin gene transcription through a cAMP-dependent protein kinase pathway. J. Biol. Chem., 269:29129–29137, 1994.PubMedGoogle Scholar
  45. Gimbrone, M.A.J., M.S. Obin, A.F. Brock, E.A. Luis, P.E. Hass, C.A. Hebert, Y.K. Yip, D.W. Leung, D.G. Lowe, W.J. Kohr, W.C. Darbonne, K.B. Bechtol, and J.B. Baker. Endothelial interleukin-8: a novel inhibitor of leukocyte-endothelial interactions. Science, 246:1601–1603, 1989.PubMedCrossRefGoogle Scholar
  46. Goldblum, S.E., T. W. Brann, X. Ding, J. Pugin, and P.S. Tobias. Lipopolysaccharide (LPS)-binding protein and soluble CD14 function as accessory molecules for LPS-induced changes in endothelial barrier function, in vitro. J. Clin. Invest., 93:692–702, 1994.PubMedCrossRefGoogle Scholar
  47. Grell, M., E. Douni, H. Wajant, M. Löheden, M. Clauss, B. Maxeiner, S. Georgopoulos, W. Lesslauer, G. Kolias, K. Pfizenmaier, and P. Scheurich. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell, 83:793–802, 1995.PubMedCrossRefGoogle Scholar
  48. Grimm, S. and P.A. Baeuerle. The inducible transcription factor NF-kappa B: structure-function relationship of its protein subunits. Biochem. J., 290:297–308, 1993.PubMedGoogle Scholar
  49. Grosset, C., B. Jazwiec, J.L. Taupin, H. Liu, S. Richard, F.X. Mahon, J. Reiffers, J.F. Moreau, and J. Ripoche. In vitro biosynthesis of leukemia inhibitory factor/human interleukin for DA cells by human endothelial cells: differential regulation by interleukin-1 alpha and glucocorticoids. Blood, 86:3763–3770, 1995.PubMedGoogle Scholar
  50. Gómez-Chiarri, M., T.A. Hamilton, J. Egido, and S.N. Emancipator. Expression of IP-10, a lipopolysaccharide-and interferon-gamma-inducible protein, in murine mesangial cells in culture. Am. J. Pathol., 142:433–439, 1993.PubMedGoogle Scholar
  51. Hadley, T.J., Z.H. Lu, K. Wasniowska, A.W. Martin, S.C. Peiper, J. Hesselgesser, and R. Horuk. Postcapillary venule endothelial cells in kidney express a multispecific chemokine receptor that is structurally and functionally identical to the erythroid isoform, which is the Duffy blood group antigen. J. Clin. Invest., 94:985–991, 1994.PubMedCrossRefGoogle Scholar
  52. Hamanaka, R., K. Kono, T. Seguchi, K. Okamura, A. Morimoto, M. Ono, J. Ogata, and M. Kuwano. Induction of low density lipoprotein receptor and a transcription factor SP-1 by tumor necrosis in human microvascular endothelial cells. J. Biol. Chem., 267:13160–13165, 1992.PubMedGoogle Scholar
  53. Haziot, A., G.W. Rong, J. Silver, and S.M. Goyert. Recombinant soluble CD14 mediates the activation of endothelial cells by lipopolysaccharide. J. Immunol., 151:1500–1507, 1993.PubMedGoogle Scholar
  54. Hebert, C.A., F.W. Luscinskas, J.M. Keily, E.A. Luis, W.C. Darbonne, G.L. Bennet, C.C. Liu, M.S. Obin, M.A.J. Gimbrone, and J.B. Baker. Endothelial and leukocyte forms of IL-8. Conversion by thrombin and interactions with neutrophils. J. Immunol., 145:3033–3040, 1990.PubMedGoogle Scholar
  55. Hechtman, D.H., M.I. Cybulsky, H.J. Fuchs, J.B. Baker, and M.A.J. Gimbrone. Intravascular IL-8. Inhibitor of polymorphonuclear leukocyte accumulation at sites of acute inflammation. J. Immunol., 147:883–892, 1991.PubMedGoogle Scholar
  56. Heinrich, J.N., R.P. Ryseck, H. Macdonald-Bravo, and R. Bravo. The product of a novel growth factor-activated gene, fic, is a biologically active C-C-type cytokine. Mol. Cell Biol., 13:2020–2030, 1993.PubMedGoogle Scholar
  57. Heller, R., F. Bussolino, D. Ghigo, G. Garbarino, G. Pescarmona, U. Till, and A. Bosia. Human endothelial cells are target for platelet-activating factor II. Platelet activating factor induces platelet-activating factor synthesis in human umbilical vein endothelial cells. J. Immunol., 149:3682–3688, 1992.PubMedGoogle Scholar
  58. Hill, M.E., I.N. Bird, R.H. Daniels, M.A. Elmore, and M.J. Finnen. Endothelial cell-associated platelet-activating factor primes neutrophils for enhanced Superoxide production and arachidonic acid release during adhesion to but not transmigration across IL-1 beta-treated endothelial monolayers. J. Immunol., 153:3673–3683, 1994.PubMedGoogle Scholar
  59. Hla, T. and T. Maciag. An abundant transcript induced in differentiating human endothelial cells encodes a polypeptide with structural similarities to G-protein-coupled receptors. J. Biol. Chem., 265:9308–9313, 1990.PubMedGoogle Scholar
  60. Hollenbaugh, D., N. Mischel Petty, C.P. Edwards, J.C. Simon, R.W. Denfeld, P.A. Kiener, and A. Aruffo. Expression of functional CD40 by vascular endothelial cells. J. Exp. Med., 182:33–40, 1995.PubMedCrossRefGoogle Scholar
  61. Holzman, L.B., R.M. Marks, and V.M. Dixit. A novel immediate-early response gene of endothelium is induced by cytokines and encodes a secreted protein. Mol. Cell Biol., 10:5830–5838, 1990.PubMedGoogle Scholar
  62. Hooft van Huijsduijnen, R., R. Pescini, and J.F. DeLamarter. Two distinct NF-kappa B complexes differing in their larger subunit bind the E-selectin promoter kappa B element. Nucleic Acids Res., 21:3711–3717, 1993.PubMedCrossRefGoogle Scholar
  63. Hooper, W.C., D.J. Phillips, M.J. Ribeiro, J.M. Benson, V.G. George, E.W. Ades and B.L. Evatt. Tumor necrosis factor-alpha downregulates protein S secretion in human microvascular and umbilical vein endothelial cells but not in the HepG-2 hepatoma cell line. Blood, 84:483–489, 1994.PubMedGoogle Scholar
  64. Howell, G., P. Pham, D. Taylor, B. Foxwell, and M. Feldmann. Interleukin 4 induces interleukin 6 production by endothelial cells: synergy with interferon-gamma. Eur. J. Immunol., 21:91–101, 1991.Google Scholar
  65. Huber, A.R., S.L. Kunkel, R.F. Todd, and S.J. Weiss. Regulation of transendothelial neutrophil migration by endogenous inerleukin-8. Science, 254:99–102, 1991.PubMedCrossRefGoogle Scholar
  66. Iademarco, M.F., J.J. McQuillan, G.D. Rosen, and D.C. Dean. Characterization of the promoter for vascular cell adhesion molecule-1 (VCAM-1). J. Biol. Chem., 267:16323–16329, 1992.PubMedGoogle Scholar
  67. Inoue, N., R.C. Venema, H.S. Sayegh, Y. Ohara, T.J. Murphy, and D.G. Harrison. Molecular regulation of the bovine endothelial cell nitric oxide synthase by transforming growth factor-beta 1. Arterioscl. Thromb. Vasc. Biol., 15:1255–1261,1995.PubMedCrossRefGoogle Scholar
  68. Introna, M., F. Breviario, E. D’Aniello, J. Golay, E. Dejana, and A. Mantovani. Il-1 inducible genes in human umbilical vein endothelial cells. Eur. Heart J., 14(suppl K):78–81, 1993.PubMedGoogle Scholar
  69. Introna, M., V. Vidal Alles, M. Castellano, G. Picardi, L. De Gioia, B. Bottazzi, G. Peri, F. Breviario, M. Salmona, L. De Gregorio, T.A. Dragani, N. Srinivasan, T.L. Blundell, T.A. Hamilton, and A. Mantovani. Cloning of mouse PTX3, a new member of the pentraxin gene family expressed at extrahepatic sites. Blood, 87:1862–1872, 1996.PubMedGoogle Scholar
  70. Jackson, B.A., R.H. Goldstein, R. Roy, M. Cozzani, L. Taylor, and P. Polgar. Effects of transforming growth factor beta and interleukin-1 beta on expression of cyclooxygenase 1 and 2 phospholipase A2 mRNA in lung fibroblasts and endothelial cells in culture. Biochem. Biophys. Res. Commun., 197:1465–1474, 1993.PubMedCrossRefGoogle Scholar
  71. Jeannin, P., Y. Delneste, P. Gosset, S. Molet, P. Lassale, Q. Hamid, A. Tsicopoulos, and A.B. Tonnel. Histamine induces interleukin-8 secretion by endothelial cells. Blood, 84:2229–2233, 1994.PubMedGoogle Scholar
  72. Jones, K., C. Rivera, C. Sgadar, J. Franklin, E.E. Max, K. Bhatia, and G. Tosato. Infection of human endothelial cells with Epstein-Barr virus. J. Exp. Med., 182:1213–1221, 1995.PubMedCrossRefGoogle Scholar
  73. Kamijo, R., H. Harada, T. Matsuyama, M. Bosland, J. Gerecitano, D. Shapiro, J. Le, S.I. Koh, T. Kimura, S.J. Green, et al. Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science, 263:1612–1615, 1994.PubMedCrossRefGoogle Scholar
  74. Kaplanski, G., R. Porat, K. Aiura, J.K. Erban, J.A. Gelfand, and C.A. Dinarello. Activated platelets induce endothelial secretion of interleukin-8 in vitro via an interleukin-1-mediated event. Blood, 81:2492–2495, 1993b.PubMedGoogle Scholar
  75. Kaplanski, G., C. Farnarier, S. Kaplanski, R. Porat, L. Shapiro, P. Bongrand, and C.A. Dinarello. Interleukin-1 induces interleukin-8 secretion from endothelial cells by juxtacrine mechanism. Blood, 84:4242–4248, 1994.PubMedGoogle Scholar
  76. Kaplanski, G., N. Teysseire, C. Farnarier, S. Kaplanski, J.C. Lissitzky, J.M. Durand, J. Soubeyrand, C. Dinarello, and P. Bongrand. IL-6 and IL-8 production from cultured human endothelial cells stimulated by infection with Rickettsia conorii a cell-associated IL-1-alpha-dependent pathway. J. Clin. Invest., 96:2839–2844, 1995.PubMedCrossRefGoogle Scholar
  77. Karakurum, M., R. Shreeniwas, J. Chen, D. Pinsky, S.D. Yan, M. Anderson, K. Sunouchi, J. Major, T. Hamilton, K. Kuwabara, A. Rot, P.R. Nowygrod, and D. Stern. Hypoxic induction of interleukin-8 gene expression in human endothelial cells. J. Clin. Invest., 93:1564–1570, 1994.PubMedCrossRefGoogle Scholar
  78. Karmann, K., C.C. Hughes, J. Schechner, W.C. Fanslow, and J.S. Pober. CD40 on human endothelial cells: inducibility by cytokines and functional regulation of adhesion molecule expression. Proc. Natl. Acad. Sci. USA, 92:4342–4346, 1995.PubMedCrossRefGoogle Scholar
  79. Kaszubska, W., R.H. van Huijsduijnen, P. Ghersa, A.M. DeRaemy Schenk, B.P. Chen, T. Hai, J.F. DeLamarter, and J. Whelan. Cyclic AMP-independent ATF family members interact with NF-kappa B and function in the activation of the E-selectin promoter in response to cytokines. Mol. Cell Biol., 13:7180–7190, 1993.PubMedGoogle Scholar
  80. Kilgore, K.S., J.P. Shen, B.F. Miller, P.A. Ward, and J.S. Warren. Ehancement by the complement membrane attack complex of tumor necrosis factor-alpha-induced endothelial cell expression of E-selectin and ICAM-1. J. Immunol., 155:1434–1441, 1995.PubMedGoogle Scholar
  81. Koch, A.E., P.J. Polverini, S.L. Lunkel, L.A. Harlow, L.A. DiPietro, V.M. Einer, S.G. Einer, and R.M. Strieter. Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science, 258:1798–1801, 1992.PubMedCrossRefGoogle Scholar
  82. Korpelainen, E.I., J.R. Gamble, W.B. Smith, G.J. Goodall, S. Qiyu, J.M. Woodcock, M. Dottore, M.A. Vadas, and A.F. Lopez. The receptor for interleukin 3 is selectively induced in human endothelial cells by tumor necrosis factor alpha and potentiates interleukin 8 secretion and neutrophil transmigration. Proc. Natl. Acad. Sci. USA, 90:11137–11141, 1993.PubMedCrossRefGoogle Scholar
  83. Korpelainen, E.I., J.R. Gamble, W.B. Smith, M. Dottore, M.A. Vadas, and A.F. Lopez. Interferon-gamma upregulates interleukin-3 (IL-3) receptor expression in human endothelial cells and synergizes with IL-3 in stimulating major histocompatability complex class II expression and cytokine production. Blood, 86:176–182, 1995.PubMedGoogle Scholar
  84. Krakauer, T. IL-10 inhibits the adhesion of leukocytic cells to IL-1-activated human endothelial cells. Immunol. Lett., 45:61–65, 1995.PubMedCrossRefGoogle Scholar
  85. Lamas, S., T. Michel, T. Collins, B.M. Brenner, and P.A. Marsden. Effects of interferon-gamma on nitric oxide synthase activity and endothelial-production by vascular endothelial cells. J. Clin. Invest., 90:879–887, 1992.PubMedCrossRefGoogle Scholar
  86. Ledebur, H.C. and T.P. Parks. Transcriptional regulation of the intercellular adhesion molecule-1 gene by inflammatory cytokines in human endothelial cells — Essential roles of a variant NF-kappa B site and p65 homodimers. J. Biol. Chem., 270:933–943, 1995.PubMedCrossRefGoogle Scholar
  87. Lee, T.H., G.W. Lee, E.B. Ziff, and J. Vilcek. Isolation and characterization of eight tumor necrosis factor-induced gene sequences from human fibroblasts. Mol. Cell Biol., 10:1982–1988, 1990.PubMedGoogle Scholar
  88. Lewis, H., W. Kaszubska, J.F. DeLamarter, and J. Whelan. Cooperatively between two NF-kappa B complexes, mediated by high-mobility-group protein I(Y), is essential for cytokine-induced expression of the E-selectin promoter. Mol. Cell Biol., 14:5701–5709, 1994.PubMedCrossRefGoogle Scholar
  89. Ley, K. J.B. Baker, M.I. Cybulsky, M.A. Gimbrone, and F.W. Luscinskas. Intravenous interleukin-8 inhibits granulocyte emigration from rabbit messenteric venules without altering L-selectin expression or leukocyte rolling. J. Immunol., 151:6347–6357, 1993.PubMedGoogle Scholar
  90. Libby, P. and G.K. Hannson. Biology of Disease. Involvement of the immune system in human atherogenesis: current knowledge and unanswered questions. Lab. Invest., 64:5–15, 1991.PubMedGoogle Scholar
  91. Lienard, D., P. Ewalenko, J.J. Delmotte, N. Renard, and F.J. Lejeune. High-dose recombinant tumor necrosis factor alpha in combination with interferon gamma and melphalan in isolation perfusion of the limbs for melanoma and sarcoma. J. Clin. Oncol, 10:52–60, 1992.PubMedGoogle Scholar
  92. Liuzzo, G., L.M. Biasucci, J.R. Gallimore, R.L. Grillo, A.G. Rebuzzi, M.B. Pepys, and A. Maseri. The prognostic value of C-reactive protein and serum amyloid a protein in severe unstable angine [see comments]. N. Engl. J. Med., 1994.Google Scholar
  93. Lukacs, N.W., R.M. Strieter, V. Einer, H.L. Evanoff, M.D. Burdick, and S.L. Kunkel. Production of chemokines, interleukin-8 and monocyte chemoattractant protein-1, during monocyte endothelial cell interactions. Blood, 86:2767–2773, 1995.PubMedGoogle Scholar
  94. Luster, A.D., S.M. Greenberg, and P. Leder. The IP-10 chemokine binds to a specific cell surface heparan sulfate site shared with platelet factor 4 and inhibits endothelial cell proliferation. J. Exp. Med., 182:219–231, 1995.PubMedCrossRefGoogle Scholar
  95. Mackay, F., H. Loetscher, D. Stueber, G. Gehr, and W. Lesslauer. Tumor necrosis factor alpha (TNF-alpha)-induced cell adhesion to human endothelial cell is under dominant control of one TNF receptor type, TNF-R55. J. Exp. Med., 177:1277–1286, 1993.PubMedCrossRefGoogle Scholar
  96. Maier, J.A., P. Voulalas, D. Roeder, and T. Maciag. Extension of the life-span of human endothelial cells by an interleukin-1 alpha antisense oligomer. Science, 249:1570–1574, 1990.PubMedCrossRefGoogle Scholar
  97. Maier, J.A., M. Statuto, and G. Ragnotti. Endogenous interleukin-1 alpha must be transported to the nucleus to exert its activity in human endothelial cells. Mol. Cell Biol., 14:1845–1851, 1994.PubMedGoogle Scholar
  98. Maione, T.E., G.S. Gray, J. Petro, A.J. Hunt, A.L. Donner, S.I. Bauer, H.F. Carson, and R.J. Sharpe. Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science, 247:77–79, 1990.PubMedCrossRefGoogle Scholar
  99. Mantovani, A., P. Allavena, F. Collotta, and S. Sozzani. Chemokines in vascular pathophysiology. In: Immune functions of the vassal wall. G.K. Hansson and P. Libby, eds, Harwood Academic Publishers, 1996.Google Scholar
  100. Mantovani, A., F. Bussolino, and E. Dejana. Cytokine regulation of endothelial cell function. FASEB J., 6:2591–2599, 1992.PubMedGoogle Scholar
  101. Mantovani, A. and E. Dejana. Cytokines as communication signals between leukocytes and endothelial cells. Immunol. Today, 10:370–375, 1989.PubMedCrossRefGoogle Scholar
  102. Marfaingkoka, A., O. Devergne, G. Gorgone, A. Portier, T.J. Schall, P. Galanaud, and D. Emilie. Regulation of the production of the RANTES chemokine by endothelial cells — Synergistic induction by IFN-gamma plus TNF-alpha and inhibition by IL-4 and IL-13. J. Immunol, 154:1870–1878, 1995.Google Scholar
  103. Martin, E. C. Nathan, and Q.W. Xie. Role of interferon regulatory factor 1 in induction of nitric oxide synthase. J. Exp. Med., 180:977–984, 1994.PubMedCrossRefGoogle Scholar
  104. Marui, N., M.K. Offermann, R. Swerlick, C. Kunsch, C.A. Rosen, M. Ahmad, R.W. Alexander, and R.M. Medford. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through and antioxidant-sensitive mechanism in human vascular endothelial cells. J. Clin. Invest., 92:1866–1874, 1993.PubMedCrossRefGoogle Scholar
  105. Mattila, P., M.L. Majuri, S. Tiisala, and R. Renkonen. Expression of six protein kinase C isotypes in endothelial cells. Life Sci., 55:1253–1260, 1994.PubMedCrossRefGoogle Scholar
  106. McCarron, R.M., L. Wang, D.B. Stanimirovic, and M. Spatz. Differential regulation of adhesion molecule expression by human cerebrovascular and umbilical vein endothelial cells. Endothelium, 2;339–346, 1995.CrossRefGoogle Scholar
  107. Meacock, S., R. Pescini Gobert, J.F. DeLamarter, and R. Hooft van Huijsduijnen. Transcription factor induced, phased bending of the E-selectin promoter. J. Biol. Chem., 269:31756–31762, 1994.PubMedGoogle Scholar
  108. Meininger, C.J., S.E. Brightman, K.A. Kelly, and B.R. Zetter. Increased stem cell factor release by hemangiomaderived endothelial cells. Lab Invest., 72:166–173, 1995.PubMedGoogle Scholar
  109. Meyrick, B., B. Christman, and G. Jesmok. Effects of recombinant tumor necrosis factor-alpha on cultured pulmonary artery and lung microvascular endothelial monolayers. Am. J. Pathol., 138;93–101, 1991.PubMedGoogle Scholar
  110. Miyaloto, S. M. Maki, M. J. Schmitt, M. Hatanaka, and I.M. Verna. Tumor necrosis factor alpha-induced phosphorylation of IkB alpha is a signal for its degradatioin but not dissociation from NF-kB. Proc. Natl. Acad. Sci. USA, 91:12740–12744, 1994.CrossRefGoogle Scholar
  111. Montrucchio, G., E. Lupia, E. Battaglia, G. Passerini, F. Bussolino, G. Emanuelli, and G. Camussi. Tumor necrosis factor alpha-induced angiogenesis depends on in situ platelet-activating factor biosynthesis. J. Exp. Med., 180:377–382, 1994.PubMedCrossRefGoogle Scholar
  112. Moyer, C.F., D. Sajuthi, H. Tulli, and J.K. Williams. Synthesis of IL-1 alpha and IL-1 beta by arterial cells in atherosclerosis. Am. J. Pathol., 138:951–960, 1991.PubMedGoogle Scholar
  113. Murata, J., S.B. Corradin, E. Felley Bosco, and L. Juillerat Jeanneret. Involvement of a transforming-growth-factor-beta-like molecule in tumor-cell-derived inhibition of nitric oxide synthesis in cerebral endothelial cells. Int. J. Cancer, 62:743–748, 1995.PubMedCrossRefGoogle Scholar
  114. Narumi, S., L.M. Wyner, M.H. Stoler, C.S. Tannebaum, and T.A. Hamilton. Tissue-specific expression of murine IP-10 mRNA following systematic treatment with interferon-gamma. J. Leukoc. Biol., 52:27–33, 1992.PubMedGoogle Scholar
  115. Nathan, C. and Q.W. Xie. Nitric oxide synthases: roles, tolls, and controls. Cell, 78:915–918, 1994.PubMedCrossRefGoogle Scholar
  116. Neish, A.S., A.J. Williams, H.J. Palmer, M.Z. Whitley, and T. Collins. Functional analysis of the human vascular cell adhesion molecule 1 promoter. J. Exp. Med., 176:1583–1593, 1992.PubMedCrossRefGoogle Scholar
  117. Neish, A.S., M.A. Read, D. Thanos, R. Pine, T. Maniatis, and T. Collins. Endothelial interferon regulatory factor 1 cooperates with NF-kB as a transcriptional activator of vascular cell adhesion molecule 1. Mol. Cell Biol., 15:2558–2569, 1995.PubMedGoogle Scholar
  118. Nelken, N.A., S.R. Coughlin, D. Gordon, and J.N. Wilcox. Monocyte chemoattractant protein-1 in human atheromatous plaques. J. Clin. Invest., 88:1121–1127, 1991.PubMedCrossRefGoogle Scholar
  119. Niedbala, M. J. and M. Stein Picarella. Role of protein kinase C in tumor necrosis factor induction of endothelial cell urokinase-type plasminogen activator. Blood, 81:2608–2617, 1993.PubMedGoogle Scholar
  120. Niu, X.F., C.W. Smith, and P. Kubes. Intracellular oxidative stress induced by nitric oxide synthesis inhibition increases endothelial cell adhesion to neutrophils. Circ. Res., 74:113–1140, 1994.CrossRefGoogle Scholar
  121. Noland, T.D., B.B. Friday, M.T. Maulit, and G.L. Gerton. The sperm acrosomal matrix contains a novel member of the pentraxin family of calcuim-dependent binding proteins. J. Biol. Chem., 269:32607–32614, 1994.PubMedGoogle Scholar
  122. Opipari, A.W.J., H.M. Hu, R. Yabkowitz, and V.M. Dixit. The A20 zinc finger protein protects cells from tumor necrosis factor cytotooxicity. J. Biol. Chem., 267:12424–12427, 1992.PubMedGoogle Scholar
  123. Oswald, I.P., I. Eltoum, T.A. Wynn, B. Schwartz, P. Caspar, D. Paulin, A. Sher, and S.L. James. Endothelial cells are activated by cytokine treatment to kill an intravascular parasite, Schistosoma mansoni, through the production of nitric oxide. Proc. Natl. Acad. Sci. USA, 91:999–1003, 1994.PubMedCrossRefGoogle Scholar
  124. Paleolog, E.M., S.A. Delasalle, W.A. Buurman, and M. Feldmann. Functional activities of receptors for tumor necrosis factor-alpha on human vascular endothelial cells. Blood, 84:2578–2590, 1994.PubMedGoogle Scholar
  125. Palmercrocker, R.L. and J.S. Pober. IL-4 induction of VCAM-1 on endothelial cells involves activation of a protein tyrosine kinase. J. Immunol., 154:2838–2845, 1995.Google Scholar
  126. Pandey, A., H. Shao, R.M. Marks, P.J. Polverini, and V.M. Dixit. Role of B61, the ligand for the Eck tyrosine kinase in TNF-alpha-induced angiogenesis. Science, 268,567–569, 1995.PubMedCrossRefGoogle Scholar
  127. Parry, G.C. and N. Mackman. A set of inducible genes expressed by activated human monolytic and endothelial cells contain kappa B-like sites that specifically bind c-Rel-p65 heterodimers. J. Biol. Chem., 269:20823–20825, 1994.PubMedGoogle Scholar
  128. Patel, K.D., V. Modur, G.A. Zimmerman, S.M. Prescott, and T.M. McIntyre. The necrotic venom of the brown recluse spider induces dysregulated endothelial cell-dependent neutrophil activation — Differential induction of GM-CSF, IL-8, and E-selectin expression. J. Clin. Invest., 94:631–642, 1994.PubMedCrossRefGoogle Scholar
  129. Pattison, J., P.J. Nelson, P. Huie, I. Vonleuttichau, G. Farshid, R.K. Sibley, and A.M. Kresky. RANTES chemokine expression in cell-mediated transplant rejection of the kidney. Lancet, 343:209–211, 1994.PubMedCrossRefGoogle Scholar
  130. Peiper, S.C., Z.X. Wang, K. Neote, A.W. Martin, H.J. Showeil, M.J. Conklyn, K. Ogborne, T.J. Hadley, Z.H. Lu, J. Hesselgesser, and R. Horuk. The Duffy antigen receptor for chemokines (DARC) is expressed in endothelial cells of Duffy negative individuals who lack the erythrocyte receptor. J. Exp. Med.,181:1311–1317,1995.PubMedCrossRefGoogle Scholar
  131. Peng, H.B., P. Libby, and J.K. Liao. Induction and stabilization of I kappa B alpha by nitric oxide mediates inhibition of NF-kappa B. J. Biol. Chem., 270:14214–14219, 1995.PubMedCrossRefGoogle Scholar
  132. Peng, H.B., T.B. Rajavashisth, P. Libby, and J.K. Liao. Nitric oxide inhibits macrophage-colony stimulating factor gene transcription in vascular endothelial cells. J. Biol. Chem., 270:17050–17055, 1995.PubMedCrossRefGoogle Scholar
  133. Pepys, M.B. and M.L. Baltz. Actue phase proteins with special reference to C-reactive protein and related proteins (pentaxis) and serum amyloid A protein. Adv. Immunol., 34:141–160, 1983.PubMedCrossRefGoogle Scholar
  134. Pescini, R., W. Kaszubska, J. Whelan, J.F. DeLamarter, and R. Hooft van Huijsduijnen. ATF-a0, a novel variant of the ATF/CREB transcription factor family, forms a dominant transcription inhibitor in ATF-a heterodimers. J. Biol. Chem., 269:1159–1165, 1994.PubMedGoogle Scholar
  135. Petzelbauer, P., J.R. Bender, J. Wilson, and J.S. Pober. Heterogeneity of dermal microvascular endothelial cell antigen expression and cytokine responsiveness in situ and in cell culture. J. Immunol., 151:5062–5072, 1993.PubMedGoogle Scholar
  136. Petzelbauer, P., C.A. Watson, S.E. Pfau, and J.S. Pober. Heterogeneity of dermal microvascular endothelial cell antigen expression and cytokine responsiveness in situ and in cell culture. J. Immunol., 151:5062–5072, 1993.PubMedGoogle Scholar
  137. Pober, J. and R.S. Cotran. Cytokines and endothelial cell biology. Physiol. Rev., 70:427–451, 1990.PubMedGoogle Scholar
  138. Pober, J.S. M.R. Slowik, L.G. De Luca, and A.J. Ritchie. Elevated cyclic AMP inhibits endothelial cell synthesis and expression of TNF-induced endothelial leukocyte adhesion molecule-1, and vascular cell adhesion molecule-1, but not intercellular adhesion molecule-1. J. Immunol, 150:5114–5123, 1993.PubMedGoogle Scholar
  139. Pugin, J., C.C. Schurer Maly, D. Leturcq, A. Moriarty, R.J. Ulevitch, and P.S. Tobias. Lipopolysaccharide activation of human endothelial and epithelial cells is medicated by lipopolysaccharide-binding protein and soluble CD14. Proc. Natl. Acad. Sci. USA, 90:2744–2478, 1993.PubMedCrossRefGoogle Scholar
  140. Pugin, J., R.J. Ulevitch, and P.S. Tobias. A critical role for monocytes and CD14 in endotoxin-induced endothelial cell activation. J. Exp. Med., 178:2193–2200, 1993.PubMedCrossRefGoogle Scholar
  141. Qi, J.F. and D.L. Kreutzer. Fibrin activation of vascular endothelial cells — Induction of IL-8 expression. J. Immunol, 155:867–876, 1995.PubMedGoogle Scholar
  142. Radomski, M.W., R.M. Palmer, and S. Moncada. Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc. Natl. Acad. Sci. USA, 87:10043–10047, 1990.PubMedCrossRefGoogle Scholar
  143. Rajavashisth, T.B., A. Andalibi, M.C. Territo, J.A. Berliner, M. Navab, A.M. Fogelman, and A.J. Lusis. Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins. Nature, 344:254–257, 1990.PubMedCrossRefGoogle Scholar
  144. Read, M.A., S.R. Cordle, R.A. Veach, C.D. Carlisle, and J. Hawiger. Cell-free pool of CD14 mediates activation of transcription factor NF-kappa B by lipopolysaccharide in human endothelial cells. Proc. Natl. Acad. Sci. USA, 90:9887–9891, 1993.PubMedCrossRefGoogle Scholar
  145. Read, M.A., M.Z. Whitley, A.J. Williams, and T. Collins. NF-kappa B and I kappa B alpha: an inducible regulatory system in endothelial activation. J. Exp. Med., 179:503–512, 1994.PubMedCrossRefGoogle Scholar
  146. Reid, M.S. and C.P. Blobel. Apexin, and acrosomal pentaxin. J. Biol. Chem., 269:32615–32620, 1994.PubMedGoogle Scholar
  147. Remzzi, G. and P. Ruggenenti. The hemolytic uremic syndrome. Kidney Int., 48:2–19, 1995.CrossRefGoogle Scholar
  148. Ritchie, A.J., D.R. Johnson, B.M. Ewenstein, and J.S. Pober. Tumor necrosis factor induction of endothelial cell surface antigens is independent of protein kinase C activation or inactivation. Studies with phorbol myristate acetate and staurosporine. J. Immunol., 146:3056–3062, 1991.PubMedGoogle Scholar
  149. Rollins, B.J., T. Yoshimura, E.J. Leonard, and J.S. Pober. Cytokine-activated human endothelial cells synthesize and secrete a monocyte chemoattractant, MCP-1/JE. Am. J. Pathol., 136:1229–1233, 1990.PubMedGoogle Scholar
  150. Rollins, B.J. and J.S. Pober. Interleukin-4 induces the synthesis and secretion of MCP-1JE by human endothelial cells. Am. J. Pathol., 138:1315–1319, 1991.PubMedGoogle Scholar
  151. Romer, L.H., N.V. McLean, H.C. Yan, M. Daise, J. Sun, and H.M. DeLisser. IFN-gamma and TNF-alpha induce redistribution of PECAM-1 (CD31) on human endothelial cells. J. Immunol., 154:6582–6592. 1995.PubMedGoogle Scholar
  152. Rosenkrantz Weiss, P., W.C. Sessa, S. Milstien, S. Kaufman, C.A. Watson, and J.S. Pober. Regulation of nitric oxide synthesis by proinflammatory cytokines in human umbilical vein endothelial cells. Elevations in tetra-hydrobiopterin levels enhance endothelial nitric oxide synthase specific activity [see comments]. J. Clin. Invest., 93:2236–2243, 1994.CrossRefGoogle Scholar
  153. Ross, R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature, 362:801–809, 1993.PubMedCrossRefGoogle Scholar
  154. Rossi, V., F. Brevario, P. Ghezzi, E. Dejana, and A. Mantovani. Prostacyclin synthesis induced in vascular cells by ineterleukin-1. Science, 229:174–176, 1985.PubMedCrossRefGoogle Scholar
  155. Rot, A. Endothelial cell binding of NAP-1/IL-8: role of neutrophil emigration. Immunol. Today, 13:291–294, 1992.PubMedCrossRefGoogle Scholar
  156. Rott, O., U. Tontsch, B. Fleischer, and E. Cash. Interleukin-6 production in “normal” and HTLV-1 tax-epressing brain specific endothelial cells. Eur. J. Immunol., 23:1987–1991, 1993.PubMedCrossRefGoogle Scholar
  157. Rovin, B.H., T. Yoshimura, and L. Tan. Cytokine-induced production of monocyte chemoattractant protein-1 by cultured human mesangial cells. J. Immunol., 148:2148–2153, 1992.PubMedGoogle Scholar
  158. Saadi, S., R.A. Holznecht, C. Patte, D.M. Stern, and J.L. Platt. Complement-mediated regulation of tissue factor activity in endothelium. J. Exp. Med., 182:1807–1814, 1995.PubMedCrossRefGoogle Scholar
  159. Sakurai, H., Kohsaka, M.F. Liu, H. Higashiyama, Y. Hirata, K. Kanno, I. Saito, and N. Miyasaka. Nitric oxide production and inducible nitric oxide synthase expression in inflammatory arthritides. J. Clin. Invest., 96:2357–2363, 1995.PubMedCrossRefGoogle Scholar
  160. Samaniego, F., P.D. Markham, R.C. Gallo, and B. Ensoli. Inflammatory cytokines induce AIDS-Kaposi’s sarcoma-derived spindle cells to produce and release basic fibroblast growth factor and enhance Kaposi’s sarcoma-like lesion formation in nude mice. J. Immunol, 154:3582–3592, 1995.PubMedGoogle Scholar
  161. Sankar, S., N. Mahooti Brooks, M. Centrella, T.L. McCarthy, and J.A. Madri. Expression of transforming growth factor type III receptor in vascular endothelial cells increases their responsiveness to transforming growth factor beta 2. J. Biol. Chem., 270:13567–13572, 1995.PubMedCrossRefGoogle Scholar
  162. Sarma, V., F.W. Wolf, R.M. Marks, T.B. Shows, and V.M. Dixit. Cloning of a novel tumor necrosis factor-alpha-inducible primary response gene that is differentially expressed in development and capillary tube-like formation in vitro. J. Immunol, 148:3302–3312, 1992.PubMedGoogle Scholar
  163. Sato, K., K. Miyakawa, M. Takeya, R. Hattori, Y. Yui, M. Sunamoto, Y. Ichimori, Y. Ushio, and K. Takahashi. Immunohistochemical expression of inducible nitric oxide synthase (iNOS) in reversible endotoxic shock studied by a novel monoclonal antibody against rat iNOS. J. Leukoc. Biol., 57:36–44, 1995.PubMedGoogle Scholar
  164. Satriano, J.A., K. Hora, Z. Shan, E.R. Stanley, T. Mori, and D. Schlondorff. Regulation of monocyte chemoatttarctant protein-1 and macrophage colony-stimulating factor-1 by IFN-gamma, tumor necrosis factor-alpha, IgG aggregates, and cAMP in mouse mesangial cells. J. Immunol, 150:1971–1978, 1993a.PubMedGoogle Scholar
  165. Satriano, J.A., M. Shuldiner, K. Hora, Y. Xing, Z. Shan, and D. Schlondorff. Oxygen radicals as second messengers for expression of the monocyte chemoattractant protein, JE/MCP-1, and the monocyte colony-stimulating factor, CSF-1, in response to tumor necrosis factor-alpha and immunoglobulin-G-evidence for involvement of reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent oxidase. J. Clin. Invest., 92:1564–1571, 1993b.PubMedCrossRefGoogle Scholar
  166. Schieven, G.G., J.C. Kallestad, T.J. Brown, J.A. Ledbetter, and P.S. Linsley. Oncostatin M induces tyrosine phosphorylation in endothelial cells and activation of p62yes tyrosine kinase. J. Immunol, 149:1676–1682, 1992.PubMedGoogle Scholar
  167. Schindler, U. and V.R. Baichwal. Three NF-kappa B binding sites in the human E-selectin gene required for maximal tumor necrosis factor alpha-induced expression. Mol. Cell Biol., 14:5820–5831, 1994.PubMedCrossRefGoogle Scholar
  168. Schlimgen, A.K., J.A. Helms, H. Vogel, and M.S. Perin. Neuronal pentraxin, a secreted protein with homology to acute phase proteins of the immune system. Neuron., 14:519–526, 1995.PubMedCrossRefGoogle Scholar
  169. Schmid, E.F., K. Binder, M. Grell, P. Scheurich, and K. Pfizenmaier. Both tumor necrosis factor receptors, TNFR60 and TNFR80 are involved in a signaling endothelial tissue factor expression by juxtacrine tumor necrosis factor alpha. Blood, 86:1836–1841, 1995.PubMedGoogle Scholar
  170. Schoedon, G., M. Schneemann, N. Blau, C.J. Edgell, and A. Schaffner. Modulation of human endothelial cell tetrahydrobiopterin synthesis by activating and deactivation cytokines: new perspectives on endothelium-derived relaxing factor. Biochem. Biophys. Res. Commun., 196:1343–1348, 1993.PubMedCrossRefGoogle Scholar
  171. Schofield, L., S. Novakovic, P. Gerold, R.T. Schwartz, M.J. McConville, and S.D. Tachado. Glycosylphosphatidylinositol toxin of plasmodium upregulates intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin expression in vascular endothelial cells and increases leukocyte and parasite cytoadherence via tyrosine kinase-dependent signal transduction. J. Immunol, 156:1886–1896, 1996.PubMedGoogle Scholar
  172. Schonbeck, U., E. Brandt, F. Petersen, H.D. Flad, and H. Loppnow. IL-8 specifically binds to endothelial but not to smooth muscle cells. J. Immunol, 154:2375–2383, 1995.PubMedGoogle Scholar
  173. Schroder, J.M. and E. Christophers. Secretion of novel and homologous neutrophil-activating peptides by LPS-stimulated human endothelial cells. J. Immunol, 142:244–251, 1989.PubMedGoogle Scholar
  174. Schultz, R., D.L. Panas, R. Catena, S. Moncada, P.M. Olley, and G.D. Lopaschuk. The role of nitric oxide in cardiac depression induced by interleukin-1 beta and tumor necrosis factor-alpha. Br. J. Pharmacol, 114:27–34, 1995.CrossRefGoogle Scholar
  175. Schwartz, D., A. Andalibi, L. Chaverrialmada, J.A. Berliner, T. Kirchgessner, Z.T. Fang, P. Tekampolson, A.J. Lusis, C. Gallegos, A.M. Fogelman, and M.C. Territo. Role of the GRO family of chemokines in monocyte adhesion to MM-LDL-stimulated endothelium. J. Clin. Invest., 94:1968–1973, 1994.PubMedCrossRefGoogle Scholar
  176. Shu, H.B., A.B. Agranoff, E.G. Nabel, K. Leung, C.S. Duckett, A.S. Neish, T. Collins, and G.J. Nabel. Differential regulation of vascular cell adhesion molecule 1 gene expression by specific NF-kappa B subunits in endothelial and epithelial cells. Mol. Cell Biol., 13:6283–6289, 1993.PubMedGoogle Scholar
  177. Shyy, Y.J., L.L. Wickman, J.P. Hagan, H.J. Hsieh, Y.L. Hu, S.H. Telian, A.J. Valente, K.L.P. Sung, and S. Chien. Human monocyte colony-stimulating factor stimulates the gene expression of monocyte chemotactic protein-1 and increases the adhesion of monocytes to endothelial monolayers. J. Clin. Invest., 92:1745–1751, 1993.PubMedCrossRefGoogle Scholar
  178. Sica, A., K. Matsushima, J. Van Damme, J.M. Wang, N. Polentarutti, E. Dejana, F. Colotta, and A. Mantovani. IL-1 transcriptionally activates the neutrophil chemotactic factor/IL-8 gene in endothelial cells. Immunology, 69:548–553, 1990a.PubMedGoogle Scholar
  179. Sica, A., J.M. Wang, F. Colotta, E. Dejana, A. Mantovani, J.J. Oppenheim, C.G. Larsen, C.O. Zachariae, and K. Matushima. Monocyte chemotactic and activating factor gene expression induced in endothelial cells by IL-1 and tumor necrosis factor. J. Immunol, 144:3034–3038, 1990b.PubMedGoogle Scholar
  180. Siebenlist, U., G. Franzoso, and K. Brown. Structure, regulation and function of NF-kB. Annu. Rev. Cell Biol., 10:405–455, 1994.PubMedCrossRefGoogle Scholar
  181. Simantov, R., J.M. LaSala, S.K. Lo, A.E. Gharavi, L.R. Sammaritano, and J.E. Salmon. Activation of cultured vascular endothelial cells by antiphospholipid antibodies. J. Clin. Invest., 96:2211–2219, 1995.PubMedCrossRefGoogle Scholar
  182. Sironi, M., F. Breviario, P. Proserpio, A. Biondi, A. Vecchi, J. Van Damme, E. Dejana, and A. Mantovani. IL-1 stimulates IL-6 production in endothelial cells. J. Immunol., 142:549–553, 1989.PubMedGoogle Scholar
  183. Sironi, M. C. Munoz, T. Pollicino, A. Siboni, F.L. Sciacca, S. Bernasconi, A. Vecchi, F. Colotta, and A. Mantovani. Divergent effects of interleukin-10 on cytokine production by mononuclear phagocytes and endothelial cells. Eur. J. Immunol, 23:2692–2695, 1993.PubMedCrossRefGoogle Scholar
  184. Sironi, M., F.L. Sciacca, C. Matteucci, M. Conni, A. Vecchi, S. Bernasconi, A. Minty, D. Caput, P. Ferrara, F. Colotta, and A. Mantovani. Regulation of endothelial and mesothelial cell function by interleukin-13: selective induction of vascular cell adhesion molecule-1 and amplification of interleukin-6 production. Blood, 84:1913–1921,1994.PubMedGoogle Scholar
  185. Slowik, M.R., L.G. De Luca, W. Fiers, and J.S. Pober. Tumor necrosis factor activates human endothelial cells through the p55 tumor necrosis factor receptor but the p75 receptor contributes to activation at low tumor necrosis factor concentration. Am. J. Pathol., 143:1724–1730, 1993.PubMedGoogle Scholar
  186. Smith, W.B., J.R. Gamble, I. Clarklewis, and M.A. Vadas. Chemotactic desensitization of neutrophils demonstrates interleukin-8 (IL-8)-dependent and IL-8-independent mechanisms of transmigration through cytokine-activated endothelium. Immunology, 78:491–497, 1993.PubMedGoogle Scholar
  187. Sporn, M.B., A.B. Roberts, L.M. Wakefield, and B. Crombrugghe. Some recent advances in the chemistry and biology of transforming growth factor-beta. J. Cell Biol., 105:1039–1045, 1987.PubMedCrossRefGoogle Scholar
  188. Strieter, R.M., S.L. Klunkel, H.J. Showell, D.G. Remick, S.H. Phan, P.A. Ward, and R.M. Marks. Endothelial cell gene expression of a neutrophil chemotactic factor by TNF-alpha, LPS, and IL-1 beta. Science, 243:1467–1469, 1989.PubMedCrossRefGoogle Scholar
  189. Strieter, R.M., S.L. Klunkel, V.M. Einer, C.L. Martonyi, A.E. Koch, P.J. Polverini, and S.G. Einer. Interleukin-8. A corneal factor that induces neovascularization. Am. J. Pathol., 141:1279–1284, 1992.PubMedGoogle Scholar
  190. Strieter, R.M., P.J. Polverini, S.L. Klunkel, D.A. Arenberg, M.D. Burdick, J. Kasper, J. Dzuiba, J. Van Damme, A. Walz, D. Marriott, S.Y. Chan, R. Roczniak, and A.B. Shanafelt. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J. Biol. Chem., 270:27348–27357, 1995.PubMedCrossRefGoogle Scholar
  191. Suen, Y., M. Chang, S.M. Lee, J.S. Buzby, and M.S. Cairo. Regulation of interleukin-11 protein and mRNA expression in neonatal and adult fibroblasts and endothelial cells. Blood, 84:4125–4134, 1994.PubMedGoogle Scholar
  192. Suschek, C., H. Rothe, K. Fehsel, J. Enczmann, and V. Kolb Bachofen. Induction of a macrophage-like nitric oxide synthase in cultured rat aortic endothelial cells. IL-1 beta-mediated induction regulated by tumor necrosis factor-alpha and IFN-gamma. J. Immunol., 151:3283–3291, 1993.PubMedGoogle Scholar
  193. Tachado, S.D., P. Gerold, M.J. McConville, T. Baldwin, D. Quilichi, R.T. Schwartz and L. Schofield. Glycosylphosphatiylinositol toxin of plasmodium induces nitric oxide synthase expression in macrophages and vascular endothelial cells by a protein tryosine kinase-dependent and protein kinase C-dependent signaling pathway. J. Immunol., 156:1897–1907, 1996.PubMedGoogle Scholar
  194. Takeya, M., T. Yoshimura, EJ. Leonard, and K. Takahashi. Detection of monocyte chemoattractant protein-1 in human athersclerotic lesions by an anti-monocyte chemoattractant protein-1 monoclonal antibody. Hum. Pathol., 24:534–539, 1993.PubMedCrossRefGoogle Scholar
  195. Tartaglia, L.A., D. Pennica, and D.V. Goeddel. Ligand passing: the 75-kDa tumor necrosis factor (TNF) receptor recruits TNF for signaling by the 55-kDa TNF receptor. J. Biol. Chem., 268:18542–18548, 1993.PubMedGoogle Scholar
  196. Thanos, D. and T. Maniatis. NF-kappa B: A lesson in family values. Cell, 80:529–532, 1995.PubMedCrossRefGoogle Scholar
  197. Tijan, R. and T. Maniatis. Transcriptional activation: a complex puzzle with few easy pieces. Cell, 77:5–8, 1994.CrossRefGoogle Scholar
  198. Valente, A.J., S.R. Fowler, E.A. Sprague, J.L. Kelley, C.A. Suenram, and C.J. Schwartz. Initial characterization of paripheral blood mononuclear cell chemoattractant derived from cultured arterial smooth muscle cells. Am. J. Pathol., 117:409–417, 1984.PubMedGoogle Scholar
  199. Valente, A.J., D.A. Graves, C.E. Vialle-Valentin, R. Delgado, and C.J. Schwartz. Purification of a monocyte chemotactic factor secreted by nonhuman primate vascular cells in culture. Biochemistry, 27:4162–4168, 1988.PubMedCrossRefGoogle Scholar
  200. van der Kar, N.C., L.A. Monnens, M.A. Karmali, and V.W. van Hinsbergh. Tumor necrosis factor and interleukin-1 induce expression of the verocytotoxin receptor globotriaosylceramide on human endothelial cells: implications for the pathogenesis of the hemolytic uremic syndrome. Blood, 81:2755–2764, 1992.Google Scholar
  201. van der Kar, N.C., T. Kooistra, M. Vermeer, W. Lesslauer, L.A. Monnens, and V.W. van Hinsbergh. Tumor necrosis factor alpha induces endothelial galactosyl transferase activity and verocytotoxin receptors. Role of specific tumor necrosis factor receptors and protein kinase C. Blood, 85:734–743, 1995.PubMedGoogle Scholar
  202. van Hinsbergh, V.W., M. Vermeer, P. Koolwijk, J. Grimbergen, and T. Kooistra. Genistein reduces tumor necrosis factor alpha-induced plasminogen activator inhibitor-1 transcription but not urokinase expression in human endothelial cells. Blood, 84:2984–2991, 1994.PubMedGoogle Scholar
  203. Vidal Alles, V., B. Bottazzi, G. Peri, J. Golay, M. Introna, and A. Mantovani. Inducible expression of PTX3, a new member of the pentraxin family, in human mononuclear phagocytes. Blood, 84:3483–3493, 1994.Google Scholar
  204. Villarete, L.H. and D.G. Remick. Nitric oxide regulation of IL-8 expression in human endothelial cells. Biochem. Biophys. Res. Commun., 211:671–676, 1995.PubMedCrossRefGoogle Scholar
  205. Voest, E.E., B.M. Kenyon, M.S. O’Reilly, G. Truitt, R.J. D’Amato, and J. Folkman. Inhibition of angiongenesis in vivo by inerleukin-12. J. Natl. Cancer Inst., 87:581–586, 1995.PubMedCrossRefGoogle Scholar
  206. von Asmuth, E.J., M.A. Dentener, V. Bazil, M.G. Bouma, J.F. Leeuwenberg and W.A. Buurman. Anti-CD 14 antibodies reduce responses of cultured human endothelial cells to endotoxin. Immunology, 80:78–83, 1993.Google Scholar
  207. von der Ahe, D., C. Nischan, C. Kunz, J. Otte, U. Knies, H. Oderwald, and B. Wasylyk. Ets transcription factor binding site is required for positive and TNF alpha-induced negative promoter regulation. Nucleic Acid Res., 21:5636–5643, 1993.PubMedCrossRefGoogle Scholar
  208. Vora, M., H. Yssel, J.E. de Vries, and M.A. Karasek. Antigen presentation by human dermal microvascular endothelial cells. Immunoregulatory effect of IFN-gamma and IL-10. J. Immunol, 152:5734–5741, 1994.PubMedGoogle Scholar
  209. Wakabayashi, H., P.G. Cavanaugh, and G.L. Nicolson. Purification and identification of mouse lung microvessel endothelial cell-derived chemoattractant for lung metastasizing murine RAW117 large-cell lymphona cels: identification as mouse monocyte chemotactic protein 1. Cancer Res., 55:4458–4464, 1995.PubMedGoogle Scholar
  210. Wang, J.M., G. Taraboletti, K. Matsushima, J. Van Damme, and A. Mantovani. Induction of haptotactic migration of melanoma cells by neutrophil activating protein/interleukin-8. Biochem. Biophys. Res. Commun., 169:165–170, 1990.PubMedCrossRefGoogle Scholar
  211. Wang, J.M., A. Sica, G. Peri, S. Walter, I.M. Padura, P. Libby, M. Ceska, I. Lindley, F. Colotta, and A. Mantovani. Expression of monocyte chemotactic protein and interleukin-8 by cytokine-activated human vascular smooth muscle cells. Arterioscler. Thromb., 11:1166–1174, 1991.PubMedCrossRefGoogle Scholar
  212. Warner, S.J. and P. Libby. Human vascular smooth muscle cells. Target for and source of tumor necrosis factor. J. Immunol., 142:100–109, 1989.PubMedGoogle Scholar
  213. Weber, C., E. Negrescu, W. Erl, A. Pietsch, M. Frankenberger, H.W. Ziegler Heitbrock, W. Siess, and P.C. Weber. Inhibitors of protein tyrosine kinase suppress TNF-stimulated induction of endothelial cell adhesion molecules. J. Immunol., 155:445–451, 1995.PubMedGoogle Scholar
  214. Wen, D., A. Rowland, and R. Derynck. Expression and secretion of gro/MGSA by stimulated human endothelial cells. EMBO J., 8:1761–1766, 1989.PubMedGoogle Scholar
  215. Werner Felmayer, G., E.R. Werner, D. Fuchs, A. Hausen, G. Reibnegger, K. Schmidt, G. Weiss, and H. Wachter. Pteridine biosynthesis in human endothelial cells. Impact on nitric oxide-mediated formation of cyclic GMP. J. Biol Chem., 268:1842–1846, 1993.PubMedGoogle Scholar
  216. Whelan, J., P. Ghersa, R. Hooft van Huijsduijnen, J. Gray, G. Chandra, F. Talabot, and J.F. DeLamarter. An NF kappa B-like factor is essential but not sufficient for cytokine induction of endothelial leukocyte adhesion molecule 1 (ELAM-1) gene transcription. Nucleic Acids Res., 19:2645–2653, 1991.PubMedCrossRefGoogle Scholar
  217. Whitley, M.Z. D. Thanos, M.A. Read, T. Maniatis, and T. Collins. A striking similarity in the organization of the E-selectin and beta interferon gene promoters. Mol. Cell Biol., 14:6464–6475, 1994.PubMedGoogle Scholar
  218. Willimann, K., H. Matile, N.A. Weiss, and B.A. Imhof. In vivo sequestration of plasmodium falciparum-infected human erythrocytes: a severe combined immunodeficiency mouse model for cerebral malaria. J. Exp. Med., 182:643–653, 1995.PubMedCrossRefGoogle Scholar
  219. Wojta, J., M. Gallicchio, H. Zoellner, E.L. Filonzi, J.A. Hamilton, and K. Mcgrath. Interleukin-4 stimulates expression of urokinase-type-plasminogen activator in cultured human foreskin microvascular endothelial cells. Blood, 81:3285–3292, 1993.PubMedGoogle Scholar
  220. Wolf, F.W., R.M. Marks, V. Sarma, M.G. Byers, R.W. Katz, T.B. Shows, and V.M. Dixit. Characterization of a novel tumor necrosis factor-alpha-induced endothelial primary response gene. J. Biol. Chem., 267:1317–1326, 1992.PubMedGoogle Scholar
  221. Wolf, F.W., V. Sarma, M. Seldin, S. Drake, S.J. Suchard, H. Shao, K.S. O’Shea, and V.M. Dixit. B94, a primary response gene inducible by tumor necrosis factor-alpha, is expressed in developing hematopoietic tissues and the sperm acrosome. J. Biol. Chem., 269:3633–3640, 1994.PubMedGoogle Scholar
  222. Woodroffe, S.B., H.M. Garnett, and J.E. Layton. Cytomegalovirus infection of vascular endothelial cells alters production of GM-CSF and G-CSF. Immunol. Cell Biol., 72:187–190, 1994.PubMedCrossRefGoogle Scholar
  223. Yan, S.F., I. Tritto, D. Pinsky, H. Liao, J. Huang, G. Fuller, J. Brett, L. May, and D. Stern. Induction of interleukin 6 (IL-6) by hypoxia in vascular cells. Central role of the binding site for nuclear factor-IL-6. J. Biol. Chem., 270:11463–11471, 1995.PubMedCrossRefGoogle Scholar
  224. Yao, L., V. Bengualid, F.D. Lowy, J.J. Gibbons, V.B. Hatcher, and J.W. Berman. Internalization of staphylococcus aureus by endothelial cells induces cytokine gene expresssion. Infect. Immun., 63:1835–1839, 1995.PubMedGoogle Scholar
  225. Yellin, M.J., J. Brett, D. Baum, A. Matsushima, A. Szabolcs, D. Stern, and L. Chess. Functional interactions of T cells with endothelial cells: the role of CD40L-CD40-mediated signals. J. Exp. Med., 182:1857–1864, 1995.PubMedCrossRefGoogle Scholar
  226. Yla Herttuala, S., B.A. Lipton, M.E. Rosenfeld, T. Sarkioja, T. Yoshimura, E.J. Leonard, J.L. Witztum, and D. Steinberg. Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions. Proc. Natl. Acad. Sci. USA, 88:5252–5256, 1991.PubMedCrossRefGoogle Scholar
  227. Yoshizumi, M., M.A. Perella, J.C. Burnett, Jr., and M.E. Lee. Tumor necrosis factor downregulates an endothelial nitric oxide synthase mRNA by shortening its half-life. Circ. Res., 73:205–209, 1993.PubMedCrossRefGoogle Scholar
  228. Yu, X., S. Dluz, D.T. Graves, L. Zhang, H.N. Antoniades, W. Hollander, S. Prusty, A.J. Valente, C.J. Schwartz, and G.E. Sonenshein. Elevated expression of monocyte chemoattractant protein 1 by vascular smooth muscle cells in hypercholesterolemic primates. Proc. Natl. Acad. Sci. USA, 89:6953–6957, 1992.PubMedCrossRefGoogle Scholar
  229. Zeiher, A.M., B. Fisslthaler, B. Schray Utz, and R. Busse. Nitric oxide modulates th expression of monocyte chemoattractant protein 1 in cultured human endothelial cells. Circ. Res., 76:980–986, 1995.PubMedCrossRefGoogle Scholar
  230. Zhang, R., W. Min, and W.C. Sessa. Functional analysis of the human endothelial nitric oxide synthase promoter. Sp1 and GATA factors are necessary for basal transcription in endothelial cells. J. Biol. Chem., 270:15320–15326, 1995.PubMedCrossRefGoogle Scholar
  231. Ziehe, M., L. Morbidelli, E. Masini, S. Amerini, H.J. Granger, C.A. Maggi, P. Geppetti, and F. Ledda. Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J. Clin. Invest., 94:2036–2044, 1994.CrossRefGoogle Scholar
  232. Zoja, C., J.M. Wang, S. Bettoni, M. Sironi, D. Renzi, F. Chiaffarino, H.E. Abobud, J. Van Damme, A. Mantovani, G. Remuzzi, and A. Rambaldi. Interleukin-1 beta and tumor necrosis factor-alpha induce gene expression and production of leukocyte chemotactic factors, colony-stimulating factors, and interleukin-6 in human mesangial cells. Am. J. Pathol, 138:991–1003, 1991.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Alberto Mantovani
    • 1
  • Paola Allavena
    • 1
  • Annunciata Vecchi
    • 1
  • Elisabetta Dejana
    • 1
  • Silvano Sozzani
    • 1
  • Martino Introna
    • 1
  1. 1.Instituto di Ricerche Farmacologiche “Mario Negri”MilanoItaly

Personalised recommendations