Skip to main content

Adhesive Molecules at Luminal Surface and at Intercellular Junctions of the Endothelium in the Regulation of Leukocyte Transendothelial Traffic

  • Chapter
Vascular Endothelium

Part of the book series: NATO ASI Series ((NSSA,volume 294))

  • 88 Accesses

Abstract

Circulating leukocytes migrate from the vessels and enter tissues under both normal and pathological situations. Whereas monocytes, lymphocytes and natural killer cells exhibit a significant spontaneous migration through resting endothelium neutrophils and eosinophils require chemotactic stimuli and/or endothelial cell activation. Cell passage across endothelial monolayers involves leukocyte adherence to the endothelium, crawling on the endothelial surface and transmigration, most probably through endothelial clefts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gallatin, W.M., Weissman I.L., Butcher, E.C. A cell-surface molecule involved in organ-specific homing of lymphocytes. Nature, 304:30–34, 1983.

    Article  PubMed  CAS  Google Scholar 

  2. Hogg, N. Roll, roll, roll your leukocyte gently down the vein. Immunol. Today, 13:113–115, 1992.

    Article  PubMed  CAS  Google Scholar 

  3. Smith, C.W., Kishimoto, T.K., Abbass O., et al. Chemotactic factors regulate lectin adhesion molecule 1 (LECAM-1)-dependent neutrophil adhesion to cytokine-stimulated endothelial cells in vitro. J. Clin. Invest., 87:609–618,1991.

    Article  PubMed  CAS  Google Scholar 

  4. Schleiffenbaum, B., Spertini, O., and Tedder, T.F.: Soluble L-selectin is present in human plasma at high levels and retains functional activity. J. Cell. Biol., 119:229–238, 1992.

    Article  PubMed  CAS  Google Scholar 

  5. Stenberg, P.E., McEver, R.P., Shuman, M.A., et al. A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. J. Cell. Biol., 191:880–886, 1985.

    Article  Google Scholar 

  6. McEver, R.P., Beckstead, J.H., Moore, K.L., et al. GMP-140, a platelet a-granule membrane protein, is also synthesized by vascular endothelial cells and is located in Weibel-Palade bodies. J. Clin. Invest., 84:92–99, 1989.

    Article  PubMed  CAS  Google Scholar 

  7. Bevilacqua, M.P. and Nelson, R.M. Selectins. J. Clin. Invest., 94:379–387, 1993.

    Article  Google Scholar 

  8. Weiler, A., Isenmann, S., and Vestweber, D. Cloning of the mouse endothelial selectins: Expression of both E-and P-selectin is inducible by tumor necrosis factor-α. J. Biol. Chem., 267:15176–15183, 1992.

    Google Scholar 

  9. Green, S.H., Setiadi, H., McEver, R.P., et al. The cytoplasmic domain of P-selectin contains a sorting determinant that mediates rapid degradation in lysosomes. J. Cell. Biol., 124:435–448, 1994.

    Article  PubMed  CAS  Google Scholar 

  10. Palabrica, T.B., Lobb, A., Furie, B.C., et al. Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature, 359:848–851, 1992.

    Article  PubMed  CAS  Google Scholar 

  11. Lorant, D.E., Topham, M.K., Whatley, R.E., et al. Inflammatory roles of P-selectin. J. Clin. Invest., 92:559–570, 1993.

    Article  PubMed  CAS  Google Scholar 

  12. Bevilacqua, M.P., Pober, J.S., Mendrick, D.L., et al. Identification of an inducible endothelial-leukocyte adhesion molecule. Proc. Natl. Acad. Sci. USA, 84:9238–9242, 1987.

    Article  PubMed  CAS  Google Scholar 

  13. Smith, C.H., Barker, J.N., Morris, R.W., et al. Neuropeptides induce rapid expression of endothelial cell adhesion molecules and elicit granulocytic infiltration in human skin. J. Immunol., 151:3274–3282, 1993.

    PubMed  CAS  Google Scholar 

  14. Lasky, L.E., Singer, M.S., Dowbenko, U., et al. An endothelial ligand for L-selectin is a novel mucin-like molecule. Cell, 69:927–938, 1992.

    Article  PubMed  CAS  Google Scholar 

  15. Baumhueter, S., Singer, M.S., Henzel, W., et al. Binding of L-selectin to the vascular sialomucin CD34. Science, 262:436–438, 1993.

    Article  CAS  Google Scholar 

  16. Rosen, S. L-selectin and its biological ligands. Histochemistry, 100:185–191, 1993.

    Article  PubMed  CAS  Google Scholar 

  17. Norton, J., Sloane, J.P., Delia, D., et al. Reciprocal of CD34 and cell adhesion ELAM-1 on vascular endothelium in acute cutaneous graft-versus-host disease. J. Pathol., 170:173–177, 1993.

    Article  PubMed  CAS  Google Scholar 

  18. Streeter, P.R., Berg, E.L., Rouse, B.T.N., et al. A tissue-specific endothelial cell molecule involved in lymphocyte homing. Nature, 331:41–46, 1988.

    Article  PubMed  CAS  Google Scholar 

  19. Berlin, C., Berg, E.L., Briskin, M.J., et al. α4β7 integrin mediates lymphocyte binding to mucosal vascular addressin MAdCAM-1. Cell, 74: 185–195, 1993.

    Article  PubMed  CAS  Google Scholar 

  20. Nakache, M., Berg, E.L., Streeter, P.R., et al. The mucosal vascular addressin is a tissue-specific endothelial cell adhesion molecule for circulating lymphocytes. Nature, 337:179–181, 1989.

    Article  PubMed  CAS  Google Scholar 

  21. Sako, O., Chang, X.J., Barone, K.M., et al. Expression cloning of a functional glycoprotein ligand for P-selectin. Cell, 75:1179–1186, 1993.

    Article  PubMed  CAS  Google Scholar 

  22. Moore, K.L., Stults, N.L., Diaz, S., et al. Identification of a specific glycoprotein ligand for P-selectin (CD62) on myeloid cells. J. Cell. Biol., 118:445–456, 1992.

    Article  PubMed  CAS  Google Scholar 

  23. Picker, L.J., Warnock, R.A., Burns, R.R., et al. The neutrophil selectin LECAM-1 presents carbohydrate ligands to the vascular selectins ELAM-1 and GMP-140. Cell, 66:921–933, 1991.

    Article  PubMed  CAS  Google Scholar 

  24. Berg, E.L., Yoshino, T., Rott, L.S., et al. The cutaneous lymphocyte antigen is a skin lymphocyte homing receptor for the vascular lectin endothelial cell-leukocyte adhesion molecule 1. J. Exp. Med., 174:1461–1466, 1991.

    Article  PubMed  CAS  Google Scholar 

  25. Walchek B., Watts, G., and Jutila, M.A. Bovine g/d T cells bind E-selectin via a novel glycoprotein receptor: Characterization of a lymphocyte/E-selectin interaction in an animal model. J. Exp. Med., 178:853–863, 1993.

    Article  Google Scholar 

  26. Ohmori, K., Takada, A., Yaneda, T., et al. Differentiation-dependent expression of sialyl stage-specific embryonic antigen-1 and I-antigens on human lymphoid cells and its implications for carbohydrate-mediated adhesion to vascular endothelium. Blood, 81:101–111, 1993.

    PubMed  CAS  Google Scholar 

  27. Lub, M., van Kooyk, Y., and Figdor, C.G. Ins and outs of LFA-1. Immunol. Today, 16:479–483, 1995.

    Article  PubMed  CAS  Google Scholar 

  28. Dustin, M.L. and Springer, T.A. Lymphocyte function-associated antigen-1 (LFA-1) interaction with intercellular adhesion molecule-1 (ICAM-1) is one of at least three mechanisms for lymphocyte adhesion to cultured endothelial cells. J. Cell. Biol., 107:321–331, 1988.

    Article  PubMed  CAS  Google Scholar 

  29. Springer, T.A. Adhesion receptors of the immune system. Nature, 346:425–434, 1990.

    Article  PubMed  CAS  Google Scholar 

  30. Graham, I.L., Gresham H.D., and Brown F.J. An immobile subset of plasma membrane CD11b/CD18 (Mac-1) is involved in phagocytosis of targets recognized by multiple receptors. J. Immunol., 142:2352–2358, 1989.

    PubMed  CAS  Google Scholar 

  31. Altieri, D.C., Plescia, J., and Plow, E. The structural motif glycine 190-valine 202 of the fibrinogen g chain interacts with CD11b/CD18 integrin (aMb2, Mac-1) and promote leukocyte adhesion. J. Biol. Chem., 268:1847–1853, 1993.

    PubMed  CAS  Google Scholar 

  32. Rieu, P., Ueda, T., Haruta I., et al. The A-domain of β2 integrin CR3 (CD11b/CD18) is a receptor for the hookworm-derived neutrophil adhesion inhibitor NIF. J. Cell. Biol., 127:2081–2091, 1994.

    Article  PubMed  CAS  Google Scholar 

  33. Miller, L.J., Schwarting, A., Springer, T.A. Regulated expression of the Mac-1, LFA-1, p150,95 glycoprotein family during leukocyte differentiation. J. Immunol., 157:2891–2900, 1986.

    Google Scholar 

  34. Myones, B.L., Dalzell J.G., Hogg, N., et al. Neutrophil and monocyte cell surface p150,95 has a iC3b-receptor (CR4) activity resembling CR3. J. Clin. Invest., 82:640–651, 1988.

    Article  PubMed  CAS  Google Scholar 

  35. Cobbold, S., Holmes, M., and Willett, B. The immunology of companion animals: reagents and therapeutic strategies with potential veterinary and human clinical applications. Immunol. Today, 15:347–353, 1994.

    Article  PubMed  CAS  Google Scholar 

  36. Hemler, M.E. Adhesive protein receptors on hematopoietic cells. Immunol. Today, 9:109–113, 1988.

    Article  PubMed  CAS  Google Scholar 

  37. Tiisala, S., Hakkarainen, M., Majuri, M.-L., et al. Down-regulation of monocytic VLA-4 leads to a decreased adhesion to VCAM-1. FEBS, 332:19–23, 1993.

    Article  CAS  Google Scholar 

  38. Elices, M.J., Osborn, L., Takada Y., et al. VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell, 60:577–584, 1996.

    Article  Google Scholar 

  39. Issekutz, T.B., Miyasaka M., Issekutz, A.C. Rat blood neutrophils express very late antigen 4 and it mediates migration to arthritic joint and dermal inflammation. J. Exp. Med., 183:2175–2184, 1996.

    Article  PubMed  CAS  Google Scholar 

  40. Imhof, B.A., Buiz, P., Hesse, B., et al. EA-1, a novel adhesion molecule involved in the homing of progenitor T lymphocytes to the thymus. J. Cell. Biol., 114:1069–1078, 1991.

    Article  PubMed  CAS  Google Scholar 

  41. Sonnenberg, A., Linders, C.J.T., Modderman, P.W., et al. Integrin recognition of different cell-binding fragments of laminin (P1, E3, E8) and evidence that α6β1 but not α6β4 functions as a major receptor for fragment E8. J. Cell. Biol., 110:2145–2155, 1990.

    Article  PubMed  CAS  Google Scholar 

  42. Chan, B.M.C., Elices, M.J., Murphy, E., et al. Adhesion to vascular cell adhesion molecule 1 and fibronectin. Comparison of α4βI (VLA-4) and α4β7 an the human B cell line JY. J. Biol. Chem., 267:8366–8370, 1992.

    PubMed  CAS  Google Scholar 

  43. Cepek, K.L., Shaw, S.K., Parker, C.M., et al. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the αEβ7 integrin. Nature, 372:190–193, 1994.

    Article  PubMed  CAS  Google Scholar 

  44. Dustin, M.L., Rothlein, A., Bhan, A.K., et al. Induction by IL-1 and interferon-gamma: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-I) J. Immunol., 137:245–254, 1986.

    PubMed  CAS  Google Scholar 

  45. Diamond, M.S., Staunton, D.E., Marlin, S.D., et al. Binding of the integrin Mac-1 (CD11/CD18) to the third immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation. Cell, 65:961–971, 1991.

    Article  PubMed  CAS  Google Scholar 

  46. Staunton, D.E., Dustin, M.L., Erickson, H.P., et al. The arrangement of the immunoglobulin-like domain of ICAM-1 and the binding sites for LFA-1 and rhinovirus. Cell, 61:243–254, 1990.

    Article  PubMed  CAS  Google Scholar 

  47. Pigott, R., Dillon, L.P., Hemingway, I.H., et al. Soluble forms of E-selectin, ICAM-1 and VCAM-1 are present in the supernatants of cytokine activated cultured endothelial cells. Biochem. Biophys. Res. Commun., 187:584–589, 1992.

    Article  PubMed  CAS  Google Scholar 

  48. Nortamo, P., Li, R., Renkonen R., et al. The expression of human intercellular adhesion molecule-2 is refractory to inflammatory cytokines. Eur. J. Immunol, 21:2629–2632, 1991.

    Article  PubMed  CAS  Google Scholar 

  49. de Fougerolles, R.R., and Springer, T.A. Intercellular adhesion molecule 3, a third adhesion counter-receptor for lymphocyte function-associated molecule 1 on resting lymphocytes. J. Exp. Med., 175:185–190, 1992.

    Article  PubMed  Google Scholar 

  50. Osborn, L., Hession, C., Tizard, A., et al. Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell, 59:1203–1211, 1989.

    Article  PubMed  CAS  Google Scholar 

  51. DeLisser, H.M., Newman, P.J., and Albelda, S.M. Molecular and functional aspects of PECAM-1/CD31. Immunol. Today, 15:490–495, 1994.

    Article  PubMed  CAS  Google Scholar 

  52. Piali, L., Hammel, P., Uherek, C., et al. CD31/PECAM-1 is a ligand for αvβ3 integrin involved in adhesion of leukocytes to endothelium. J. Cell. Biol., 130:451–460, 1995.

    Article  PubMed  CAS  Google Scholar 

  53. Muller, W.R., Weigl, S.A., Deng, H., et al. PECAM-1 is required for transendothelial migration of leukocytes. J. Exp. Med., 178:449–468, 1993.

    Article  PubMed  CAS  Google Scholar 

  54. Marchesi, V.T. and Florey, H.W. Electron micro graphic observations on the emigration of leukocytes. Q. J. Exp. Physiol., 45:343–348, 1968.

    Google Scholar 

  55. Brenner, B.M., Troy J.L., and Ballermann, B.J. Endothelium dependent vascular responses. Mediators and mechanisms. J. Clin. Invest., 84:1373–1378, 1989.

    Article  PubMed  CAS  Google Scholar 

  56. Baggiolini, M., Dewald, B., Moser, B. Interleukin-8 and related chemotactic cytokines-CXC and CC chemokines. In: Advances in Immunology, Dixon, F.J., (ed.), vol. 55, pp. 97–148, Academic Press, San Diego, 1994.

    Google Scholar 

  57. Smith, C.W., Rothlien, A., Hughes, B.J., et al. Recognition of an endothelial determinant for CD18-dependent human neutrophil adherence and transendothelial migration. J. Clin. Invest., 82:1746–1756, 1989.

    Article  Google Scholar 

  58. Hakkert, B.C., Kuijpers, T.W., Leeuwenberg, J.F.M., et al. Neutrophil and monocyte adherence to and migration across monolayers of cytokine-activated endothelial cells: the contribution of CD18, ELAM-1, and VLA-4. Blood, 78:2721–2726, 1991.

    PubMed  CAS  Google Scholar 

  59. Luscinskas, F.W., Cybulsky, M.I., Kiely J.M., et al. Cytokine activated human endothelial monolayers support enhanced neutrophil transmigration via a mechanism involving both endothelial-leukocyte adhesion molecule-1 and intercellular adhesion molecule-1. J. Immunol., 146:1617–1625, 1991.

    PubMed  CAS  Google Scholar 

  60. Chuluyan, H.E. and Issekutz, A.C. VLA-4 integrin can mediate CD11/CD18-independent transendothelial migration of human monocytes. J. Clin. Invest., 92:2768–2777, 1994.

    Article  Google Scholar 

  61. Vaporciyan, A.A., DeLisser, H.M., and Yan, H.C. Involvement of platelet endothelial cell adhesion molecule-1 in neutrophil recruitment in vivo. Science, 262:1580–1582, 1993.

    Article  PubMed  CAS  Google Scholar 

  62. Tanaka, Y., Albelda, S.M., Horgan, K.J., et al. CD31 expressed on distinctive T cell subsets is a preferential amplifier of β1 integrin-mediated adhesion. J. Exp. Med., 176:245–253, 1992.

    Article  PubMed  CAS  Google Scholar 

  63. Furie, M.B., Naprstek, B.L., and Silverstein, S.C. Migration of neutrophils across monolayers of cultured microvascular endothelial cells. An in vitro model of leukocyte extravasation. J. Cell. Sci., 88:161–175, 1987.

    PubMed  CAS  Google Scholar 

  64. Moser, R., Schleiffenbaum, B., Groscurth P., et al. Interleukin 1 and tumor necrosis factor stimulate human vascular endothelial cells to promote transendothelial neutrophil passage. J. Clin. Invest., 83:444–455, 1989.

    Article  PubMed  CAS  Google Scholar 

  65. Shaw, J.O. Leukocytes in chemotactic-fragment-induced lung inflammation: Vascular emigration and alveolar surface migration. Am. J. Pathol., 101:283–302, 1980.

    PubMed  CAS  Google Scholar 

  66. Lehr, H.A., and Arfors, K.E. Mechanisms of tissue damage by leukocytes. Curr. Opin. Hematol., 1:92–99, 1994.

    PubMed  CAS  Google Scholar 

  67. Huber, A.R. and Weiss S.J. Disruption of the subendothelial basement membrane during neutrophil diapedesis in an in vitro construct of a blood vessel wall. J. Clin. Invest., 83:1122–1136, 1989.

    Article  PubMed  CAS  Google Scholar 

  68. Kuijpers, T.W., Hoogerwerf, M., and Roos, D. Neutrophil migration across monolayers of resting or cytokine-activated endothelial cells. J. Immunol, 148:72–77, 1992.

    PubMed  CAS  Google Scholar 

  69. Dejana, E., Corada, M., Lampugnani, M.G. Endothelial cell-to-cell junctions. FASEB J., 9:910–918, 1995.

    PubMed  CAS  Google Scholar 

  70. Takeichi, M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science, 251:1451–1455, 1991.

    Article  PubMed  CAS  Google Scholar 

  71. Kemler, A. From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet., 9:317–321, 1993.

    Article  PubMed  CAS  Google Scholar 

  72. Lampugnani, M.G., Resnati, M., Raiteri, M., et al. A novel endothelial-specific membrane protein is a marker of cell-cell contacts. J. Cell. Biol., 118:1511–1522, 1992.

    Article  PubMed  CAS  Google Scholar 

  73. Lampugnani, M.G., Corada M., Caveda, L., et al. The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, β-catenin and α-catenin with vascular endothelial cadherin (VE-cadherin). J. Cell. Biol., 129:203–217, 1995.

    Article  PubMed  CAS  Google Scholar 

  74. Rabiet, M.J., Plantier, J.L., Rival, V., et al. Thrombin-induced increase in endothelial permeability is associated with changes in cell to cell junction organization. Arterioscler. Thromb. Vasc. Biol., 16:488–496, 1996.

    Article  PubMed  CAS  Google Scholar 

  75. Del Maschio, A., Zanetti, A., Corada M., et al. Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions. J. Cell. Biol., 135:497–510, 1996.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Del Maschio, A., Zanetti, A., Andriopoulou, P., Lampugnani, M.G., Dejana, E. (1998). Adhesive Molecules at Luminal Surface and at Intercellular Junctions of the Endothelium in the Regulation of Leukocyte Transendothelial Traffic. In: Catravas, J.D., Callow, A.D., Ryan, U.S. (eds) Vascular Endothelium. NATO ASI Series, vol 294. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0133-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0133-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0135-4

  • Online ISBN: 978-1-4899-0133-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics