Control of iNOS Expression in Rat Aortic Smooth Muscle Cells

  • John D. Catravas
  • Nandor Marczin
Part of the NATO ASI Series book series (NSSA, volume 294)


Beyond endothelial NO production through ecNOS (type III NOS), there is increasing evidence for a different mechanism of NO formation via the inducible NO synthase (iNOS or type II NOS) in a variety of cells, including vascular endothelial and smooth muscle cells.11,3,1,2,6,27 This enzyme also uses L-arginine as substrate and is sensitive to inhibitory L-arginine analogues; furthermore, it does not appear to differ significantly from ecNOS on the basis of cofactor requirements.17 It can be distinguished, however, by the major characteristics of its activation. In contrast to the endothelial, rapidly responsive constitutive pathway, the activity of the inducible pathway is generally calcium and calmodulin independent, slow in onset, occurs after a delay of several hours, it is transcriptionally regulated and sensitive to dexamethasone.31


Smooth Muscle Cell Vascular Smooth Muscle Cell Sodium Nitroprusside Calcium Ionophore Aortic Smooth Muscle Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beasley, D., R. A. Cohen, and N. G. Levinsky. Interleukin-I inhibits contraction of vascular smooth muscle. J.Clin. Invest. 83:331–335, 1989.PubMedCrossRefGoogle Scholar
  2. 2.
    Beasley, D., J. H. Schwartz, and B. M. Brenner. Interleukin 1 induces prolonged L-arginine-dependent cyclic guanosine monophosphate and nitrite production in rat vascular smooth muscle cells. J. Clin. Invest. 87:602–608, 1991.PubMedCrossRefGoogle Scholar
  3. 3.
    Beasley, D. Interleukin 1 and endotoxin activate soluble guanylate cyclase in vascular smooth muscle. Am. J. Physiol. 259:R38–R44, 1990.PubMedGoogle Scholar
  4. 4.
    Bradford, M. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248–253.PubMedCrossRefGoogle Scholar
  5. 5.
    Breitfeld, P. P., McKinnon, W. C., and Mostov, K. E. (1990) J. Cell Biol. 111, 2365.PubMedCrossRefGoogle Scholar
  6. 6.
    Busse, R. and Mulsch, A. Induction of nitric oxide synthase by cytokines in vascular smooth muscle cells. FEBS LeUers 275:87–90, 1990.CrossRefGoogle Scholar
  7. 7.
    Cantley, L.C., Auger, K.R., Carpenter, C., Duckworth, B., Graziani, A., Kapeller, R. and Soltoff, S. Oncogenes and signal transduction. Cell 64:281–302, 1991.PubMedCrossRefGoogle Scholar
  8. 8.
    Carter K.C., Cooper, R., Papaconstantinou, J. and Ritchie, D.G. Microtubule Depolymerization inhibits the regulation of a,-acid glycoprotein MRNA by hepatocyte stimulating factor. J. Biol. Chem. 264:515–519, 1989.PubMedGoogle Scholar
  9. 9.
    Ding, A. H., Porteu, F., Sanchez, E. and Nathan, C. F. Shared actions of endotoxin and taxoi: induction of TNF release and downregulation of TNF receptors. Science 248:370–372,1992.CrossRefGoogle Scholar
  10. 10.
    Ding, A.H., Porteu, F., Sanchez, E. and Nathan, C.F. Down-regulation of tumor necrosis factor receptors on macrophages and endothelial cells by microtubule depolymerizing agents. J.Exp. Med. 171, 715–727, 1990.PubMedCrossRefGoogle Scholar
  11. 11.
    Fleming, I., G. A. Gray, G. Julou-Schaeffer, J. R. Parratt and J. Stoclet. Incubation with endotoxin activates the L-arginine pathway in vascular tissue. Biochem. Biophys. Res. Commun. 171:562–568, 1990.PubMedCrossRefGoogle Scholar
  12. 12.
    Garland, D. L. (1978) Biochemistry. 17, 4266.PubMedCrossRefGoogle Scholar
  13. 13.
    Geinsterfer, A. A. T., M. J. Peach, and G. Owens. Angiotensin 11 induces hypertrophy but not hyperplasia of cultured rat aortic smooth muscle cells. Circ. Res. 62: 749–756, 1988.CrossRefGoogle Scholar
  14. 14.
    Geroulanos, S., Schilling, J., Cakmakci, M., Jung, H.H., and Largiader, F. (1992) Inhibition of NO synthesis in septic shock. Lancet. 339, 434–435.Google Scholar
  15. 15.
    Hortelano, S., A. M. Genaro, and L. Bosca. Phorbol esters induce nitric oxide synthase activity in rat hepatocytes. J. Biol. Chem. 267: 24937–24940, 1992.PubMedGoogle Scholar
  16. 16.
    Kilbourne, R.G. and P. Belloni. Endothelial cell production of nitrogen oxides in response to interferon in combination with tumor necrosis factor, interleukin-1, or endotoxin. J. Natt. Cancer Inst. 82:772–776, 1990.CrossRefGoogle Scholar
  17. 17.
    Knowles, R.G. and Moncada, S. Nitric oxide as a signal in blood vessels. TIBS 17:399–402, 1992.PubMedGoogle Scholar
  18. 18.
    Lee, J. C., Fleld, D. J., and Lee, L. L. Y. (1980) Biochemistry. 19, 6209.PubMedCrossRefGoogle Scholar
  19. 19.
    Lorente, J.A., Landin, L., De Pablo, R., Renes, E. and Liste D. L-arginiiie pathway in sepsis syndrome. Ciitical Care Medicine 21(No 9): 1287–1295, 1993.CrossRefGoogle Scholar
  20. 20.
    Munoz, E., Zublaga, A., Huang, C-K and Huber, B.T. Interleukin-I induces protein tyrosine phosphorylation in T cells. Eur. J. Immunol. 22:1391–1396, 1992.PubMedCrossRefGoogle Scholar
  21. 21.
    Ochoa, J.B., Udekwu, A.O., Billar, T.R., et al. 1991. Nitrogen oxide levels in patients after trauma and sepsis. Ann. Surg. 214:621–626.PubMedCrossRefGoogle Scholar
  22. 22.
    Otto, A.M., Zumbe, A., Gibson, L., Kubier, A. and de Asua, L.J. Cytoskeleton-disrupting drugs enhance effect of growth factors and hormones on initiation of DNA synthesis. Proc. Natl Acad. Sci. U. S.A. 76:6435–6438, 1979.PubMedCrossRefGoogle Scholar
  23. 23.
    Petros, A., Bennett, D., and Vallance P. (1991) Effect of nitric oxide synthase inhibitors on hypotension in patients with septic shock. Lancet. 338, 1557–1558.PubMedCrossRefGoogle Scholar
  24. 24.
    Ryan J.W. & Ryan U.S. Endothelial surface enzymes and the processing of plasma substrates. Int.Rev.Exp.Pathol. 26:1, 1984.PubMedCrossRefGoogle Scholar
  25. 25.
    Santell, L., Marotti, K., Bartfeld, N.S., Baynham, P. and Levin E.G. Disruption of microtubules inhibits the stimulation of tissue plasminogen adtivator expression and promotes plasminogen activator inhibitor type I expression in human endothelial cells. Exp. Cell Res. 201:358–365, 1992.PubMedCrossRefGoogle Scholar
  26. 26.
    Schiff, P.B., Fant, J., and Horwitz, S.B. (1979) Nature. 277, 665–667.PubMedCrossRefGoogle Scholar
  27. 27.
    Schini, V. B., D. C. Junquero, T. Scott-Burden, and P. M. Vanhoutte. Interieukin-1 b inducesthe production of an L-arginine-derived relaxing factor from cultured smooth muscle cells from rat aorta. Biochem. Biophys. Res. Conunun. 176:114–121, 1991.CrossRefGoogle Scholar
  28. 28.
    Corbett, J.A., M.A. Sweetland, J.R. Lancaster Jr., and M.L. McDaniel. A 1-hour pulse with IL-1 induces formation of nitric oxide and inhibits insulin secretion by rat islets of L.angerhans: evidence for a tyrosine kinase signaling mechanism. FASEB J. 7:369–374, 1993.PubMedGoogle Scholar
  29. 29.
    Di Salvo, J., A. Steusloff, L. Semenchuk, S. Satoh, K. Kolquist and G. Pfizer. Tyrosine kinase inhibitors supress agonist-induced contraction in smooth muscle. Biochem. Biophys. Res.Commun. 190, 968–974, 1993.PubMedCrossRefGoogle Scholar
  30. 30.
    Penman, S., D. G. Capco, E. G. Fey, P. Chatterjee, T. Reiter, S. Ermish and K. Wan. The three-dimensional structural networks of cytoplasm and nucleus: Function in cells and tissue. Modern Cell Biol. 2:385–415, 1983.Google Scholar
  31. 31.
    Xie, Q., Cho, H.J., Calaycay, J., Mumford, R.A., Swiderek, K.M., Lee, T.D., Ding, A., Troso, T. and Nathan, C. Cloning and characterization of inducible nitirc oxide synthase from mouse macrophages. Science 256:225–228, 1992.PubMedCrossRefGoogle Scholar
  32. 32.
    Evans, T., Carpenter, A., and Cohen, J. Inducible nitric-oxide-syntase mRNA is transiently expressed and destroyed by a cycleheximide-sensitive process. Eur. J. Biochem. 219:563–569, 1994.PubMedCrossRefGoogle Scholar
  33. 33.
    Brooker G., Terasake, W., and Price, M. Gammaflow: A completely automated radioimmunoassay system. Science 194:270–276, 1976.PubMedCrossRefGoogle Scholar
  34. 34.
    Meyer, M., Schreck R. and Bauerie, P.A. H202 and antioxidants have opposite effects on activation of NF-KB and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. ne EMBO Journal:2005-2015.Google Scholar
  35. 35.
    Devary, Y., Gottlieb, R.A., Smeal, T. and Karin, M. The Mammalian Ultraviolet Response IsTriggered by Activation of Src Tyrosine Kinases. Cell 71:1081–1091, 1992.PubMedCrossRefGoogle Scholar
  36. 36.
    Coyne, D.W., and A. R. Morrison. Effect of the tyrosine kinase inhibitor-, genistein, on interleukin-I stimulated PGE, production in mesangial cells. Biochem. Biophys. Res. Commun. 173: 718–724, 1990.PubMedCrossRefGoogle Scholar
  37. 37.
    Catravas, J.D. and Watkins, C.A. Plasmalemmal metabolic activities in cultured calf pulmonary arterial endothelial cells. Res.Commun. Chemic. Path. Pharmacol. 50:163–179.Google Scholar
  38. 38.
    Hunter, W.M. and Greenwood, F.C. Preparation of iodine-131 labeled juman growth hormone of high specific activity. Nature, 194;495–496, 1962.PubMedCrossRefGoogle Scholar
  39. 39.
    Patel, A. and Linden, J. Purification of 125I-lbeled succinyl cyclic nucleotide tyrosine methyl esters by high-performance liquid chromatography. Anal Biochem., 168:417–420, 1988.PubMedCrossRefGoogle Scholar
  40. 40.
    Corbett, J.A., Sweetland, M.A., Lancaster, J.R., Jr., and McDaniel, M.L. A 1-hour pulse with IL-1β induces formation of nitric oxide and inhibits insulin secretion by rat isles of Langerhans: evidence for a tyorsine kinase signaling mechanism. Faseb J. 7:369–374, 1993.PubMedGoogle Scholar
  41. 41.
    Unemori, E.N. and Werb, Z.J. Reorganization of polymerized actin: a possible trigger for induction of procollagenase in fibroblasts cultured in and on collagen gels. J. Cell Biol., 103; 1021–1031, 1986.PubMedCrossRefGoogle Scholar
  42. 42.
    Botteri, F.M., ballmer-Hofer, K., Rajput, B., and Nagamine, Y. Disruption of cytoskeletal structures results in the induction of the urokinase type plasminogen activator gene expression. J. Biol. Chem., 265:13327–13334, 1990.PubMedGoogle Scholar
  43. 43.
    Walker, P.R. and Whitfield, J.F. Cytoplasmic microtubules are essential for the formatin of membrane bound polyribosomes. J. Biol. Chem., 260:765–770, 1985.PubMedGoogle Scholar
  44. 44.
    Sundell, C.L., and Singer, R.H. Requirement of microfilaments in sorting of actin mRNA. Science, 253:1275–1277,1991.PubMedCrossRefGoogle Scholar
  45. 45.
    Birchmeier, W. Cytoskeleton structure and function. Trends Biochem. Sci., 9:192–195, 1984.CrossRefGoogle Scholar
  46. 46.
    Marczin, N., Papapetropoulos, A., and Catravas, J.D. Tyrosine kinase inhibitors suppress endotoxin-and IL-1β-induced NO synthesis in aortic smooth muscle cells. Am.Physiol.Soc. H1014-H1018, 1993.Google Scholar
  47. 47.
    Marczin, N., Jilling, T., Papapetropoulos, A., Go C., and Catravas, J.D. Cytoskeleton-dependent activation of the inducible nitric oxide synthase in cultured aortic smooth muscle cells. British J. Pharmacol. 118:1085–1094, 1996.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • John D. Catravas
    • 1
  • Nandor Marczin
    • 2
  1. 1.Vascular Biology CenterMedical College of GeorgiaAugustaUSA
  2. 2.Health Science Center, Imperial CollegeHarefield HospitalHarefield, MiddlesexUK

Personalised recommendations