Nitric Oxide Modulation of Gene Expression

  • Machelle Manuel
  • Sha Zhu
  • Sadis Matalon
  • I. Y. Haddad
Part of the NATO ASI Series book series (NSSA, volume 294)


The free radical nitric oxide (·NO) is the major form of the endothelial-derived relaxing factor that is enzymatically synthesized from arginine oxidation by an NADPH-dependent nitric oxide synthase. ·NO causes smooth muscle relaxation by activating soluble guanylate cyclase, and inhibits platelet aggregation and adhesion to endothelium by increasing cGMP41. Because of the vasorelaxant properties of ·NO and its rapid inactivation in the blood by its reaction with hemoglobin, ·NO inhalation has been advocated as a means of selectively reducing pulmonary hypertension and improving ventilation/perfusion mismatching in a variety of clinical situations9,40.


Nitric Oxide Acute Lung Injury Guanylate Cyclase Pulmonary Vascular Permeability Peroxynitrous Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akaike, T., Y. Nogushi, S. Ijiri, K. Setoguchi, M. Suga, Y.M. Sheng, B. Dietzschold, and H. Maeda. Pathogenesis of influenza virus-induced pneumonia: Involvement of both nitric oxide and oxygen radicals. Proc. Natl. Acad. Sci. USA, 93:2448–2453, 1996.CrossRefPubMedGoogle Scholar
  2. Alving, K., E. Weitzberg, and J.M. Lundberg. Increased amount of nitric oxide in exhaled air of asthmatics. Eur. Respir. J., 6:1368–1370, 1993.PubMedGoogle Scholar
  3. Andrew, P.J., H. Harant, and I.J. Lindley. Nitric oxide regulates IL-8 expression in melanoma cells at the transcriptional level. Biochem. Biophys. Res. Commun., 214:949–956, 1995.CrossRefPubMedGoogle Scholar
  4. Beckman, J.S., T.W. Beckman, J. Chen, P.A. Marshall, and B.A. Freeman. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and Superoxide. Proc. Natl. Acad. Sci. USA, 87:1620–1624, 1990.CrossRefPubMedGoogle Scholar
  5. Beckman, J.S., H. Ischiropoulos, L. Zhu, M. van der Woerd, C. Smith, J. Chen, J. Harrison, J.C. Martin, and M. Tsai. Kinetics of Superoxide dismutase-and iron-catalyzed nitration of phenolics by peroxynitrite. Arch. Biochem. Biophys., 298:438–445, 1992.CrossRefPubMedGoogle Scholar
  6. Benzing, A., P. Brautigam, K. Geiger, T. Loop, U. Beyer, and E. Moser. Inhaled nitric oxide reduces pulmonary transvascular albumin flux in patients with acute lung injury. Anesthesiology, 83:1153–1161, 1995.CrossRefPubMedGoogle Scholar
  7. Berisha, H.I., H. Pakbaz, A. Absood, and S.I. Said. Nitric oxide as a mediator of oxidant lung injury to paraquat. Proc. Natl. Acad. Sci. USA, 91:7445–7449, 1994.CrossRefPubMedGoogle Scholar
  8. Carreras, M.C., G.A. Pargament, S.D. Catz, J.J. Poderoso, and A. Boveris. Kinetics of nitric oxide and hydrogen peroxide production and formation of peroxynitrite during the respiratory burst of human neutrophils. FEBS Lett., 341:65–68, 1994.CrossRefPubMedGoogle Scholar
  9. Channick, R.N., R.C. Hoch, J.W. Newhart, F.W. Johnson, and C.M. Smith. Improvement in pulmonary hypertension and hypoxemia during nitric oxide inhalation in a patient with end-stage pulmonary fibrosis. Am. J. resp. Crit. Care Med., 149:811–814, 1994.CrossRefPubMedGoogle Scholar
  10. Cleeter, M.W., J.M. Cooper, V.M. Darley-Usmar, S. Moncada, and A.H. Schapira. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide: Implications for neurodegenerative diseases. FEBS Lett., 345:50–54, 1994.CrossRefPubMedGoogle Scholar
  11. Colasanti, M., T. Persichini, M. Menegazzi, S. Mariotto, E. Giordano, C.M. Caldarera, V. Sogos, M. Lauro, and H. Suzuki. Induction of nitric oxide synthase mRNA expresson. Suppression by exogeneous nitric oxide. J. Biol. Chem. 270:26731–26733, 1995.CrossRefPubMedGoogle Scholar
  12. De Caterina, R., P. Libby, H.B. Peng, V.J. Thannickal, T.B. Rajavashisth, M.A. Gimbrone, Jr., W.S. Shin, and J.K. Liao. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J. Clin. Invest., 96:60–68, 1995.CrossRefPubMedGoogle Scholar
  13. Drapier, J.C., H. Hiding, J. Wietzerbin, P. Kaldy, and L.C. Kuhn. Biosynthesis of nitric oxide activates iron regulatory factor in macrophages. EMBO J., 12:3643–3649, 1993.PubMedGoogle Scholar
  14. Eigler, A., J. Moeller, and S. Endres. Exogeneous and endogeneous nitric oxide attenuates tumor necrosis factor in the murine macrophage cell line RAW 264.7. J. Immunol., 154:4048–4054, 1995.PubMedGoogle Scholar
  15. Foubert, L., B. Fleming, R. Latimer, M. Jonas, A. Oduro, C. Borland, and T. Higenbottam. Safety guidelines for use of nitric oxide [letter]. Lancet, 339:1615–1616, 1992.CrossRefPubMedGoogle Scholar
  16. Graham, A., N. Hogg, B. Kalyanaraman, V. O’Leary, V. Darley-Usmar, and S. Moncada. Peroxynitrite modification of low density lipoprotein leads to recognition by the macrophage scavenger receptor. FEBS Lett., 330:181–185, 1993.CrossRefPubMedGoogle Scholar
  17. Green, S.J., L.F. Scrieller, M.A. Marietta, M.C. Seguin, F.W. Klotz, M. Slayter, B.J. Nelson, and C.A. Nacy. Nitric oxide: cytokine-regulation of nitric oxide in host resistance to intracellular pathogens. Immunol Lett., 43:87–94, 1994.CrossRefPubMedGoogle Scholar
  18. Griffith, O.W. and D.J. Stuehr. Nitric oxide synthases: properties and catalytic mechanism. Annn. Rev. Physiol., 57:707–736, 1995.CrossRefGoogle Scholar
  19. Haddad, I.Y., J.P. Crow, P. Hu, Y. Ye, J. Beckman, and S. Matalon. Concurrent generation of nitric oxide and superoxide damages surfactant protein A. Am. J. Physiol., 267:L242–L249, 1994.PubMedGoogle Scholar
  20. Haddad, I.Y., R.I. Garver, Jr., E.J. Sorscher, E. Tzeng, and S. Matalon. Decreased efficiency of adenovirus-mediated gene transfer by nitric oxide. Am. J. Respir. Crit. Care Med., 153:109, 1996.Google Scholar
  21. Haddad, I.Y., H. Ischiropoulos, B.A. Holm, J.S. Beckman, J.R. Baker, and S. Matalon. Mechanisms of peroxynitrite-induces injury to pulmonary surfactants. Am. J. Physiol., 265:L555–64, 1993.PubMedGoogle Scholar
  22. Haddad, I.Y., G. Pataki, P. Hu, C. Galliani, J.S. Beckman, and S. Matalon. Quantitation of nitrotryosine levels in lung sections of patients and animals with acute lung injury. J. Clin. Invest., 94:2407–2413, 1994.CrossRefPubMedGoogle Scholar
  23. Haddad, I.Y., S. Zhu, J. Crow, E. Barefield, T. Gadilhe, and S. Matalon. Inhibition of alveolar type II cell ATP and surfactant synthesis by nitric oxide. Am. J. Physiol. Lung Cell. Mol. Physiol., In Press.Google Scholar
  24. Haddad, I.Y., S. Zhu, H. Ischiropoulos, and S. Matalon. Nitration of surfactant protein A results in decreased ability to aggregate lipids. Am. J. Physiol. Lung Cell. Mol. Physiol., 270:L281–L288, 1996.Google Scholar
  25. Heiss, L.N., J.R. Lancaster, Jr., J.A. Cobett, and W.E. Goldman. Epithelial autotoxicity of nitric oxide: role in the respiratory cytopathology of pertussis. Proc. Natl. Acad. Sci. USA, 91:267–270, 1994.CrossRefPubMedGoogle Scholar
  26. Ischiropoulos, H., L. Zhu, and J.S. Beckman. Peroxynitrite formation from macrophage-derived nitric oxide. Arch. Biochem. Biophys., 298:446–451, 1992.CrossRefPubMedGoogle Scholar
  27. Kanner, J., S. Harel, and R. Granit. Nitric oxide as an antioxidant. Arch. Biochem. Biophys., 289:130–136, 1991.CrossRefPubMedGoogle Scholar
  28. Kaplan, S.S., J.R. Lancaster, Jr., R.E. Basford, and R.L. Simmons. Effect of nitric oxide on staphylococcal killing and interactive effect with Superoxide. Infect. Immun., 64:69–76, 1996.PubMedGoogle Scholar
  29. Karupiah, G., Q.W. Xie, R.M. Buller, C. Nathan, C. Duarte, and J.D. MacMicking. Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase. Science, 261:1445–1448, 1993.CrossRefPubMedGoogle Scholar
  30. Kavanaugh, B.P., A. Mouchawar, J. Goldsmith, and R.G. Pearl. Effects of inhaled NO and inhibition of endogeneous NO synthesis in oxidant-induced acute lung injury. J. Appl. Physiol., 76:1324–1329, 1994.Google Scholar
  31. Kharitonov, S.A., D. Yates, and P.J. Barnes. Increased nitric oxide in exhaled air of normal human subjects with upper respiratory tract infections. Eur. Respir. J., 8:295–297, 1995.CrossRefPubMedGoogle Scholar
  32. Kim, Y.M., H.A. Bergonia, C. Muller, B.R. Pitt, W.D. Watkins, and J.R. Lancaster, Jr. Loss and degradation of enzyme-bound heme induced by cellular nitric oxide synthesis. J. Biol Chem., 270:5710–5713, 1995.CrossRefPubMedGoogle Scholar
  33. Knowles, M.R., K.W. Hohneker, Z. Zhou, J.C. Olsen, T.L. Noah, P.C. Hu, M.W. Leigh, J.F. Engelhardt, L.J. Edwards, and K.R. Jones. A controlled study of adenoviral-vector-mediated gene transfer in the nasal epithelium of patients with cystic fibrosis [see comments]. N. Engl. J. Med., 333:823–831, 1995.CrossRefPubMedGoogle Scholar
  34. Kobzik, L., D.S. Bredt, C.J. Lowenstein, J. Drazen, B. Gaston, D. Sugarbaker, and J.S. Stamler. Nitric oxide synthase in human and rat lung: immunocytochemical and histochemical localization. Am. J. Resp. Cell Mol. Biol., 9:371–377, 1993.CrossRefGoogle Scholar
  35. Kooy, N.W. and J.A. Royall. Agonist-induced peroxynitrite production from endothelial cells. Arch. Biochem. Biophys., 310:352–359, 1994.CrossRefPubMedGoogle Scholar
  36. Kubes, P., M. Suzuki, and D.N. Granger. Nitric oxide: and endogeneous modulator of leukocyte adhesion. Proc. Natl. Acad. Sci. USA, 88:4651–4655, 1991.CrossRefPubMedGoogle Scholar
  37. Kwon, N.S., D.J. Sreuher, and C.F. Nathan. Inhibition of tumor cell ribonucleotide reductase by macrophage-derived nitric oxide. J. Exp. Med., 174:761–767, 1991.CrossRefPubMedGoogle Scholar
  38. Matalon, S., V. DeMarco, I.Y. Haddad, C. Myles, J.W. Skimming, S. Schuren, S. Cheng, and S. Cassin. Inhaled nitric oxide injures the pulmonary surfactant system of lambs in vivo. Am. J. physiol. Lung Cell. Mol. Physiol., 270:L273–L280, 1996.Google Scholar
  39. Mohr, S., J.S. Stamler, and B. Brune. Mechanism of covalent modification of glyceraldehyde-3-phosphate dehydrogenase at its active site thiol by nitric oxide, peroxynitrite and related nitrosating agents. FEBS Lett., 348:223–227, 1994.CrossRefPubMedGoogle Scholar
  40. Moinard, J., G. Manier, O. Pillet, and Y. Castaing. Effect of inhaled nitric oxide on hemodynamics and VA/Q inequalities in patients with chronic obstructive pulmonary disease. Am. J. Resp. Crit. Care Med., 149:1482–1487, 1991.CrossRefGoogle Scholar
  41. Moncada, S., R.M. Palmer, and E.A. Higgs. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev., 43:109–142, 1991.PubMedGoogle Scholar
  42. Mulligan, M.S., J.M. Hevel, M.A. Marietta, and P.A. Ward. Tissue injury caused by deposition of immune complexes is L-arginine dependent. Proc. Natl. Acad. Sci. USA. 88:6338–6342, 1991.CrossRefPubMedGoogle Scholar
  43. Nilsson, A., G. Engberg, S. Henneberg, K. Danielson, and C.H. De Verdier. Inverse relationship between age-dependent erythrocyte activity of methaemoglobin reductase and prilocaine-induced metaemoglobinaemia during infancy. Br. J. Anest., 64:72–76, 1990.CrossRefGoogle Scholar
  44. Pantopoulos, K. and M.W. Hentze. Nitric oxide signaling to iron-regulatory protein: direct control of ferritin mRNA translation and transferrin receptor mRNA stability in transfected fibroblasts. Proc. Natl. Acad. Sci. USA, 92:1267–1271,1995.CrossRefPubMedGoogle Scholar
  45. Pendino, K.J., J.D. Laskin, R.L. Shuler, C.J. Punjabi, and D. L. Laskin. Ehanced production of nitric oxide by alveolar macrophages after inhalation of a pulmonary irritant is associated with increased expression of nitric oxide synthase. J. Immunol., 151:7196–7205, 1993.PubMedGoogle Scholar
  46. Peng, H.B., P. Libby, and J.K. Liao. Induction and stabalization of I kappa B alpha by nitric oxide mediates inhibition of NF-kappa B. J. Biol. Chem., 270:14214–14219, 1995.CrossRefPubMedGoogle Scholar
  47. Pilz, R.B., M. Suhasini, S. Idriss, J.L. Meinkoth, and G. R. Boss. Nitric oxide and cGMP analogs activate transcription from AP-1 responsive promoters in mammalian cells. FASEB J., 9:552–558, 1995.PubMedGoogle Scholar
  48. Poss, W.B., O.D. Timmons, I.S. Farukh, J.R. Hoidal, and J.R. Michael. Inhaled nitric oxide prevents the increase in pulmonary vascular permeability caused by hydrogen peroxide. J. Appl. Physiol., 79:886–891, 1995.PubMedGoogle Scholar
  49. Punjabi, C.J., J.D. Laskin, K.J. Pendino, N.L. Goller, S.K. Durham, and D.L. Laskin. Production of nitric oxide by rat type II pneumocytes: increased expression of inducible nitric oxide synthase following inhalation of a pulmonary irritant. Am. J. Respir. Cell Mol. Biol., 11:165–172, 1994.CrossRefPubMedGoogle Scholar
  50. Radi, R., J.S. Beckman, K.M. Bush, and B.A. Freeman. Peroxynitrite-induced membrane lipid peroxidation: the ctyotoxic potential of Superoxide and nitric oxide. Arch. Biochem. Biophys., 288:481–487, 1991.CrossRefPubMedGoogle Scholar
  51. Radi, R., J.S. Beckman, K.M. Bush, and B.A. Freeman. Peroxynitrite oxidation sulfhydryls. The cytotoxic potential of Superoxide and nitric oxide. J. Biol. Chem., 266:4244–4250, 1991.PubMedGoogle Scholar
  52. Radi, R. M. Rodriquez, L. Castro, and R. Telleri. Inhibition of mitochondrial electron transport by peroxynitrite. Arch. Biochem. Biophys., 308:89–95, 1994.CrossRefPubMedGoogle Scholar
  53. Renard, S., N. Voilley, F. Bassilana, M. Lazdunski, and P. Barbry. Localization and regulation by steroids of the alpha, beta, and gamma subunits of the amiloride-sensitive Na+ channel in colon, lung, and kidney. Pflugers Arch., 430:299–307, 1995.CrossRefPubMedGoogle Scholar
  54. Rossaint, R. K.J. Falke, F. Lopez, K. Slama, U. Pison, and W.M. Zapol. Inhaled nitric oxide for the adult respiratory distress syndrome [see comments]. N. Engl. J. Med., 328:399–405, 1993.CrossRefPubMedGoogle Scholar
  55. Rubbo, H., A. Denicola, and R. Radi. Peroxynitrite inactivates thiol-containing enzymes of Trypanosoma cruzi energetic metabolism and inhibits cell respiration. Arch. Biochem. Biophys., 308:96–102, 1994.CrossRefPubMedGoogle Scholar
  56. Rubbo, H. R. Radi, M. Trujillo, R. Telleri, B. Kalyanaraman, S. Barnes, M. Kirk, and B. A. Freeman. Nitric oxide regulation of Superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives. J. Biol. Chem., 269:26066–26075, 1994.PubMedGoogle Scholar
  57. Schedin, U., C. Frostell, M.G. Persson, J. Jakobsson, G. Andersson, and L.E. Gustafsson. Contribution from upper and lower airways to exhaled endogeneous nitric oxide in humans. Acta Anesthesiol. Scand., 39; 327–332, 1995.CrossRefGoogle Scholar
  58. Stuehr, D.J. and C.F. Nathan. Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J. Exp. Med., 169:1543–1555, 1989.CrossRefPubMedGoogle Scholar
  59. Szabo, C., C. Thiemermann, C.C. Wu, M. Perretti, and J.R. Vane. Attenuation of the induction of nitric oxide synthase by endogeneous glucocorticoids accounts for endotoxin tolerance in vivo. Proc. Natl Acad. Sci. USA, 91:271–275,1994.CrossRefPubMedGoogle Scholar
  60. Tzeng, E., T.R. Billiar, P.D. Robbins, M. Loftus, and D. Stuehr. Expression of human inducible nitric oxide synthase in a tetrahydrobiopterin (H4B)-deficient cell line: H4B promotes assembly of enzyme subunits into an active dimer. Proc. Natl. Acad. Sci. USA, 92:11771–11775, 1995.CrossRefPubMedGoogle Scholar
  61. Uppu, R.M., G.L. Squadrito, and W.A. Pryor. Acceleration of peroxinitrite oxidations by carbon dioxide. Arch. Biochem. Biophys., 327:335–343, 1996.CrossRefPubMedGoogle Scholar
  62. van der Meide, P.H., M.C. de Labie, C.A. Botman, J. Aten, and J.J. Weening. Nitric oxide suppresses IFN-gamma production in the spleen of mercuric chloride-exposed brown Norway rats. Cell Immunol., 161:195–206, 1995.CrossRefPubMedGoogle Scholar
  63. Wei, X.Q., I.G. Charles, A. Smith, J. Ure, G.J. Feng, F.P. Huang, D. Xu, W. Muller, S. Moncada, and F.Y. Liew. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature, 375:408–411, 1995.CrossRefPubMedGoogle Scholar
  64. Weiss, G., B. Goossen, W. Doppier, D. Fuchs, K. Pantopoulos, G. Werner-Felmayer, H. Wachter, and M.W. Hentze. Translational regulation via iron-responsive elements by the nitric oxide/NO-synthase pathway. EMBO J., 12:3651–3657, 1993.PubMedGoogle Scholar
  65. Wink, D.A., I. Hanbauer, M.C. Krishna, W. DeGraff, J. Gamson, and J.B. Mitchell. Nitric oxide protects against cellular damage and cytotoxicity form reactive oxygen species. Proc. Natl. Acad. Sci. USA, 90:9813–9817, 1993.CrossRefPubMedGoogle Scholar
  66. Wolff, D.J. and A. Lubeskie. Aminoguanidine is an isoform-selective, mechanism-based inactivator of nitric oxide synthase. Arc. Biochem. Biophys., 316:290-301.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Machelle Manuel
    • 1
  • Sha Zhu
    • 1
  • Sadis Matalon
    • 1
    • 2
    • 3
  • I. Y. Haddad
    • 3
  1. 1.Department of AnesthesiologyUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.Department of Physiology and BiophysicsUniversity of Alabama at BirminghamBirminghamUSA
  3. 3.Department of PediatricsUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations