Skip to main content

Stealthâ„¢ Liposomes as Carriers of Doxorubicin

  • Chapter
Targeting of Drugs 6

Part of the book series: NATO ASI Series ((NSSA,volume 300))

Abstract

Liposomes, as non-covalently bound carriers, biocompatible and biodegradable, have raised considerable interest as a drug delivery system in cancer chemotherapy (Gregoriadis, 1988). Most applications of liposomes in cancer chemotherapy are directed at altering tissue distribution and various pharmacokinetic parameters of the drug in question in such a way that toxicity can be reduced and/or efficacy increased (Mayhew and Papahadjopoulos, 1983). Reduced toxicity may be gained through site circumvention of drug sensitive tissues and by slow release of the cytotoxic agent from the carrier, avoiding peak plasma concentrations after bolus injection of free drug. Liposome- mediated decrease in toxicity could enable escalation of dose, which will result in increased tumor exposure to the drug.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, T.M., Hansen, C.B., and Guo, L.S.S., 1993, Subcutaneous administration of liposomes: a comparison with the intravenous and intraperitoneal routes of injection. Biochim. Biophys. Acta, 1150:9.

    Article  PubMed  CAS  Google Scholar 

  • Cabanes, A., Tzemach, D., Goren, D., Horowitz, A.T., and Gabizon A., 1998, Comparative study of the anti-tumor activity of free doxorubicin and polyethylene glycol-coated liposomal doxorubicin in a mouse lymphoma model, Clin. Cancer Res. 4:499.

    PubMed  CAS  Google Scholar 

  • Forssen, E.A., and Tokes, Z.A., 1981, Use of anionic liposomes for the reduction of chronic doxorubicin-induced cardiotoxicity, Proc Natl Acad Sci 78:1873.

    Article  PubMed  CAS  Google Scholar 

  • Forssen, E.A., and Tokes, Z.A., 1983, Improved therapeutic benefits of doxorubicin by entrapment in anionic liposomes, Cancer Res. 43:546.

    PubMed  CAS  Google Scholar 

  • Gabizon, A., 1992, Selective tumor localization and improved therapeutic index of anthracyclines encapsulated in long-circulating liposomes, Cancer Res. 52:891.

    PubMed  CAS  Google Scholar 

  • Gabizon, A., 1995, Liposome circulation time and tumor targeting:implications for cancer chemotherapy, Adv. Drug DelivRev. 16:285.

    Article  CAS  Google Scholar 

  • Gabizon, A., Meshorer, A., and Barenholz, Y., 1986b, Comparative long term study of the toxicities of free and liposomes associated doxorubicin in mice after intravenous administration, J.Natl. Cancer Inst. 77:459.

    PubMed  CAS  Google Scholar 

  • Gabizon, A., Goren, D., and Barenholz, Y., 1988a, Investigation on the antitumor efficacy of liposome-associated doxorubicin in murine tumor models, Isr. J. Med Sci. 24:517.

    Google Scholar 

  • Gabizon, A., Barenholz, Y., and Bialer, M, 1993a, Prolongation of the circulation time of doxorubicin encapsulated in liposomes containing a polyethylene glycol-derivatized phospholipid: Pharmacokinetic studies in rodents and dogs, Pharm. Res. 10:703.

    Article  PubMed  CAS  Google Scholar 

  • Gabizon, A., Goren, D., Ramu, A., and Barenholz, Y., 1986a, Design, characterization and anti-tumor acticity of adriamycin containing phospholipid vesicles, In: Targeting of Drugs with Synthetic Systems, G. Gregoriadis, J. Senior, G. Poste eds., Plenum, London.

    Google Scholar 

  • Gabizon, A., Goren, D., Fuks, Z., Meshorer, A., and Barenholz, Y., 1985, Superior therapeutic activity of liposome associated adriamycin in a murine metastatic tumor model, Br.J. Cancer, 51:681.

    Article  PubMed  CAS  Google Scholar 

  • Gabizon, G., Goren, D., Fuks, Z., Barenholz, Y., Dagan, A., and Meshorer, A., 1983, Enhancement of adriamycin delivery to liver metastatic cells with increased tumoricidal effect using liposomes as drug carriers, Cancer Res. 43:4730.

    PubMed  CAS  Google Scholar 

  • Gabizon, A., Dagan, A., Goren, D., Barenholz, Y., and Fuks, Z., 1982, Liposomes as in vivo carriers of adriamycin: Reduced cardiac uptake and preserved antitumor activity in mice. Cancer Res. 42:4734.

    PubMed  CAS  Google Scholar 

  • Gabizon, A., Pappo, O., Goren, D., Chemla, M, Tzemach, D., and Horowitz, A.T., 1993b, Preclinical studies with doxorubicin encapsulated in polyethylene glycol-coated liposomes, J. Liposome Res. 3:517.

    Article  CAS  Google Scholar 

  • Gabizon, G., Chemla, M., Tzemach, D., Horowitz, A.T., and Goren, D., 1996, Liposome longevity and stability in circulation: effects on the in vivo delivery to tumors and therapeutic efficacy of encapsulated anthracyclines, J. Drug Targeting, 3:391.

    Article  CAS  Google Scholar 

  • Gabizon, A., Goren, D., Horowitz, A.T., Tzemach, D., Lossos, A., and Siegal, T., 1997, Long-circulating liposomes for drug delivery in cancer therapy: a review of biodistribution studies in tumor-bearing animals, Adv. Drug Deliv. Rev. 24:337.

    Article  CAS  Google Scholar 

  • Gabizon, A., Catane, R., Uziely, B., Kaufman, B., and Barenholz, Y., 1994, Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes, Cancer Res. 54:987.

    PubMed  CAS  Google Scholar 

  • Goren, D., Horowitz, A.T., Zalipsky, S., Woodle, M.C., Yarden, Y., and Gabizon, A., 1996, Targeting of Stealth liposomes to erbB2 (Her/2) receptor: in vitro and in vivo studies. Br.J. Cancer, 74:1749.

    Article  PubMed  CAS  Google Scholar 

  • Goren, D., Horowitz, A.T., Mandelbaum-Shavit, F., Tzemach, D., Zalipsky, S., and Gabizon, A., 1997, In vitro and in vivo studies of folate-targeted liposomes, Proc.Cont. Rel. Soc. 24:865.

    Google Scholar 

  • Gregoriadis, G., ed., 1988, Liposomes as Drug Carriers: Recent Trends and Progress, Wiley, London.

    Google Scholar 

  • Haran, G., Cohen, R., Bar., L.K. and Barenholz, Y., 1993, Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases, Biochim. Biophys. Acta,1151:201.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, D., Tomlinson, D., and Stewart, S., 1995, Liposomal entrapped doxorubicin:an active agent in aids-related Kaposi’s sarcoma, J. Clin. Oncol. 13:914.

    PubMed  CAS  Google Scholar 

  • Van Hoesel, Q.G., Steerenberg, P.A., Crommelin, D.J., Van Dijk, A., Van Oort, W., Klein, S., Douze, J.M., de Wildt, DJ., and Hillen, F.C., 1984, Reduced cardiotoxicity and nephrotoxicity with preservation of anti-tumor activity of doxorubicin entrapped in stable liposomes in the Lou/M Ws1 Rat, Cancer Res. 44:3698.

    PubMed  Google Scholar 

  • Lasic, D., and Martin, F., eds., 1995, Stealth Liposomes, Pharmacology and Toxicology series, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Lasic, D.D., Frederik, P.M., Stuart, M.C., Barenholz, Y., and McIntosh, T.J., 1992, Gelation of liposome interior a novel method for drug encapsulation, FEBS Lett. 312:255.

    Article  PubMed  CAS  Google Scholar 

  • Lee, R.J., and Low, P.S., 1994, Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis, J. Biol. Chem. 269:3198.

    PubMed  CAS  Google Scholar 

  • Legha, S.S., Benjamin, R.S., Mackay, B., et al., 1982, Reduction of doxorubicin cardiotoxicity by prolonged continuous infusion, Ann Intern. Med 96:133.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, L.D., Tai, L.C., Bally, M.B., Mitilens, G.N., Ginsberg, R.S., and Cullis, P.R., 1990, Characterization of liposomal systems containing doxorubicin entrapped in response to pH gardients, Biochim.Biophys. Acta, 1025:143.

    Article  PubMed  CAS  Google Scholar 

  • Mayhew, E., and Papahadjopoulos, D., 1983, Therapeutic application of liposomes. In: Liposomes, M.J. Ostro, ed., Marcel Dekker, New-York.

    Google Scholar 

  • Minow, R.A., Benjamin, R.S., and Gottlieb, J.A., 1975, Adriamycin cardiomyopathy; an overview with determination of risk factors, Cancer Chemother. Rep. 6:195.

    Google Scholar 

  • Muggia, F.M., Hainsworth, J.D., Jeffers, S., Miller, P., et al., and Liang.-Jung, L.J., 1997, Phase II study of liposomal doxorubicin in refractory ovarian carcinoma: anti-tumor activity and toxicity modification by liposomal encapsulation, J. Clin. Oncol. 15:987.

    CAS  Google Scholar 

  • Olson, F., Mayhew, E., Maslow, D., Rustum, Y., and Szoka, F., 1982, Characterization, toxicity and therapeutic efficacy of adriamycin encapsulated in liposomes, Eur J. Cancer Clin. Oncol. 18:167.

    Article  PubMed  CAS  Google Scholar 

  • Rahman, A., White, G., More, N., and Schein, P.S., 1985, Pharmacological, toxocological and therapeutic evaluation in mice of doxorubicin entrapped in cardiolipin liposomes, Cancer Res. 45:769.

    Google Scholar 

  • Rahman, A., Fumagali, A., Barbieri, B., Schein, P.S., and Casazza, A.M., 1986, Anti-tumor and toxicity evaluation of free doxorubicin and doxorubicin entrapped in cardiolipin liposomes, Cancer Chemother. Pharmacol. 16:22.

    PubMed  CAS  Google Scholar 

  • Ranson, M.R., Carmichael, J., O’Byrne, K., Stewart, S., Smith, D., and Howell, A., 1997, Treatment of advanced breast cancer with sterically stabilized liposomal doxorubicin: results of a multicenter phase II trial. J. Clin. Oncol. 15:3185.

    PubMed  CAS  Google Scholar 

  • Torchilin, V.P., 1995, Long circulating drug delivery systems, Adv. Drug Deliv. Rev. 16:125.

    Article  CAS  Google Scholar 

  • Unezaki, S., Maruyama, K., Ishido, O., Suginaka, A., Hosoda, J., and Iwatsuru, M., 1995, Enhanced tumor targeting and improved antitumor activity of doxorubicin by long-circulating liposomes containing amphipathic poly(ethyleneglycol), Int. J. Pharm. 126:41.

    Article  CAS  Google Scholar 

  • Uziely, B., Jeffers, S., Isacson, R., Kutsch, K., Wei-Tsao, D., Yehoshua, Z., Muggia, F.M., and Gabizon, A., 1995, Liposomal doxorubicin: anti-tumor activity and unique toxicities during two complementary phase I studies, J. Clin. Oncol. 13:1777.

    PubMed  CAS  Google Scholar 

  • Young, R.C., Ozols, R.F., and Myers, C.E., 1981, The anthracycline anti-neoplastic drugs, N. Engl. J.Med. 305:139.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goren, D., Zalipsky, S., Horowitz, A.T., Gabizon, A. (1998). Stealthâ„¢ Liposomes as Carriers of Doxorubicin. In: Gregoriadis, G., McCormack, B. (eds) Targeting of Drugs 6. NATO ASI Series, vol 300. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0127-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0127-9_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0129-3

  • Online ISBN: 978-1-4899-0127-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics