PEG-Coated Nanospheres: Surface Optimization and Therapeutic Applications

  • R. Gref
  • P. Quellec
  • M. J. Alonso
  • M. Tobio
  • M. Lück
  • R. H. Müller
  • E. Dellacherie
Chapter
Part of the NATO ASI Series book series (NSSA, volume 300)

Abstract

Biodegradable polyethylene glycol (PEG)-coated nanospheres have important therapeutic applications as injectable blood persistent particulate carriers for the controlled release of drugs, site-specific drug delivery, or medical imaging. They are obtained by emulsion/solvent evaporation (Gref et al., 1994), solvent displacement (Bazile et al., 1995), or block copolymer adsorption on preformed particles (Stolnick et al., 1994). The hydrophilic PEG coating reduces the surface charge, avoids plasma protein adsorption, minimizes the interaction with phagocytic cells and therefore increases the blood circulation time. The blood half-life of such particles is increased to up to six hours in rats (Bazile et al., 1995), compared to uncoated ones, which are removed within minutes, essentially by macrophages located in the liver and spleen. These recent nanospheres have essential advantages over other long-circulating systems, such as increased stability, resistance against plasma protein insertion in the matrix, and the possibility of obtaining controlled release, on the basis of an appropriate choice of the core composition.

Keywords

Human Serum Albumin Sodium Cholate Plasma Protein Adsorption Outer Aqueous Phase Entrapment Yield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appel, R.D., Hochstrasser, D.F., Funk, M., Vargas, J.R., Pellegrini, C., Müller, A.F. and Scherrer, J.R., 1991, The MELANIE project: From a biopsy to automatic protein map interpretation by computer, Electrophoresis 12:722.PubMedCrossRefGoogle Scholar
  2. Bazile, D., Prud’homme, C., Bassoullet, M.T., Marlard, M, Spenlehauer, G. and Veillard, M., 1995, Stealth MePEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system, J. Pharm. Sci. 84:493.PubMedCrossRefGoogle Scholar
  3. Blanco, M.D. and Alonso, M.J., Development and characterization of protein-loaded poly(lactide-co-glycolide) nanospheres, Eur. J. Pharm. Biopharm., in press.Google Scholar
  4. Blunk, T., Hochstrasser, D.F., Sanchez, J.C., Müller B.W., and Müller, R.H., 1993, Colloidal carriers for intravenous drug targeting: Plasma protein adsorption patterns on surface-modified latex particles evaluated by two-dimensional polyacrylamide gel electrophoresis, Electrophoresis, 14:1382.PubMedCrossRefGoogle Scholar
  5. Blunk, T., 1994, Ph. D. thesis, University of Kiel, Germany.Google Scholar
  6. Cohen, S., Yoshioka, T., Lucarelli, M., Hwang, L.H. and Langer, R., 1991, Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres, Pharm. Res., 8:713.PubMedCrossRefGoogle Scholar
  7. Delattre, J., Couvreur, P., Puisieux, F. and Philippot, J.-R., 1993, Les liposomes, aspects technologiques, biologiques et pharmacologiques, Ed. InanospheresERM, Tec &Doc Lavoisier, Paris.Google Scholar
  8. Golaz, O., Hughes, G.J., Frutiger, S., Paquet, N., Bairoch, A., Pasquali, C, Sanchez, J.-C, Tissot, J.-D., Appel, R.D., Walzer, C, Balant, L., and Hochstrasser, DF., 1993, Plasma and red blood cell protein maps: Update 1993, Electrophoresis 14:1223.PubMedCrossRefGoogle Scholar
  9. Gombotz, W.R., Guanghui, W., Horbett, T.A., and Hoffmann, A.S., 1991, Protein adsorption to poly (ethylene oxide) surfaces, J. Biomed. Mater. Res., 25:1547.PubMedCrossRefGoogle Scholar
  10. Gref, R., Minamitake, Y., Peracchia, M.T., Trubetskoy, V., Torchilin, V., and Langer, R., 1994, Biodegradable long-circulating nanospheres, Science 263:1600.PubMedCrossRefGoogle Scholar
  11. Gref, R., Domb, A., Quellec, P., Blunk, T., Müller, R.H., Verbavatz, J.M., and Langer, R., 1995, The controlled intravenous administration of drugs using PEG-coated sterically stabilized nanospheres, Adv. Drug Deliv. Rev. 16:215.CrossRefGoogle Scholar
  12. Hochstrasser, D.F., Harrington, M.G., Hochstrasser, A.-C., Miller, M.J., and Merril, C.R., 1988, Methods for increasing the resolution of two-dimensional protein electrophoresis, Anal. Biochem., 173:424.PubMedCrossRefGoogle Scholar
  13. Hora, M.S., Rana, R.K., Nunberg, J.H., Tice, T.R., Gilley, R.M. and Hudson, M.E., 1990, Release of human serum albumin from poly(lactide-co-glycolide) microspheres, Pharm. Res., 7:1190.PubMedCrossRefGoogle Scholar
  14. Hrkach, J.S., Peracchia M.T., Domb, A., Lotan N., and R. Langer, Nanotechnology for biomaterials engineering: structural characterization of amphiphilic polymeric nanospheres using 1H-NMR spectroscopy, Biomaterials, in press.Google Scholar
  15. Jeon, S.I., Lee, J.H., Andrade, J.D., and De Gennes, P.G., 1991, Protein-surface interactions in the presence of polyethylene oxide, I. Simplified theory, J. Colloid Interf. Sci., 142:149.CrossRefGoogle Scholar
  16. Park, T.G., Lu, W. and Crotts, G., 1995, Importance of the in vitro experimental conditions on protein release kinetics, stability and polymer degradation in protein encapsulated P(DL-LA-co-GA) MS, J. Controlled Rel. 33:211.CrossRefGoogle Scholar
  17. Peracchia, M.T., Gref, R., Minamitake, Y., Domb, A., Lotan, N., and Langer, R., 1997, PEG-coated nanospheres from amphiphilic diblock and multiblock copolymers: investigation of their drug encapsulation and release characteristics, J. Controlled Rel. 46:223.CrossRefGoogle Scholar
  18. Peterson, G.L., 1977, A simplification of the protein assay method of Lowry and al. which is more generally applicable, Anal. Biochem., 83:346.PubMedCrossRefGoogle Scholar
  19. Quellec, P., Gref, R., Calvo, P., Alonso, M.J., and Dellacherie, E., 1996, Encapsulation of a model protein and of a hydrophobic drug into long-circulating biodegradable nanospheres, Procced. Intern. Symp. Control. Rel. Bioact. Mater., 23:815.Google Scholar
  20. Sharif, S. and O’Hagan, DS., 1995, A comparison of alternative methods for the determination of the levels of proteins entrapped in PLGA microparticles, Int. J. Pharm. 115:259.CrossRefGoogle Scholar
  21. Stolnick, S., Dunn, S.E., Garnett, M.C., Davies, M.C., Coombes, A.G.A., Taylor, D.C., Irving, M.P., Purkiss, S.C., Tadros, T.F., Davis, S. and Ilium, L., 1994, Surface modification of poly(lactide-co-glycolide) nanospheres by biodegradable poly(lactide)-poly(ethylene glycol) copolymers, Pharm. Res. 11:1800.CrossRefGoogle Scholar
  22. Swendeman, S.P., Tobio, M, Joworowicz, M., Alonso, M.J. and Langer, R., New strategies for the micro-encapsulation of tetanus vaccine, J. Microencapsulation, in press.Google Scholar
  23. Tan, J., Butterfield, D., Voycheck, C, Caldwell, C. and Li, J., 1993, Surface modification of nanoparticles by PEO/PPO block copolymers to minimize the interactions with blood components and prolong blood circulation in rats, Biomaterials, 14:823.PubMedCrossRefGoogle Scholar
  24. Vittaz, M., Bazile, D., Spenlehauer, G., Verrecchia, T., Veillard, M., Puisieux, F., and Labarre, D., 1996, Effect of PEO surface density on long-circulating PLA-PEO nanoparticles which are very low complement activators, Biomaterials, 17:1575.PubMedCrossRefGoogle Scholar
  25. Youxin, L., Volland, C. and Kissel, T., 1994, In vitro degradation and BSA release of P(L-LA)-POE-P(L-LA) and PLGA-POE-PLGA, J. Controlled Rel., 32:121.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • R. Gref
    • 1
  • P. Quellec
    • 1
  • M. J. Alonso
    • 2
  • M. Tobio
    • 2
  • M. Lück
    • 3
  • R. H. Müller
    • 3
  • E. Dellacherie
    • 1
  1. 1.Laboratoire de Chimie Physique MacromoléculaireENSICNancyFrance
  2. 2.Laboratorio de Farmacia GalénicaUniversidad de SantiagoSantiago de CompostellaSpain
  3. 3.Department of Pharmacy, Biopharmacy and BiotechnologyFreie University of BerlinBerlinGermany

Personalised recommendations