Coating of Nanoparticles with Surfactants: Targeting versus Prolonged Circulation

  • Jörg Kreuter
Part of the NATO ASI Series book series (NSSA, volume 300)


Nanoparticles were introduced as drug delivery systems about 25 years ago. They share with liposomes a common problem: they are rapidly taken up by the macrophages of the so-called monocular phagocytic system (MPS) (also known as the reticuloendothelial system (RES)) and accumulate mainly in the liver, spleen, and lungs, whereas other targets in the body are much harder to reach. Great efforts have been undertaken to overcome this rapid uptake by the liver and other parts of the MPS, and the present symposium is mainly devoted to this problem. The most successful strategies to prevent the rapid RES uptake are coating of the particles with surfactants or covalent linkage of polyoxyethylene chains to their surfaces (see other chapters of this book for references). The properties of some of these systems to achieve prolonged blood circulation times are often refered to as “stealth” properties acknowledging their non-recognition by the MPS. However, keeping these colloidal drug carriers in the blood circulation for extended times does not necessarily mean that they reach their desired therapeutic target site. In order to reach this objective other strategies may have to be employed.


Human Immunodeficiency Virus Human Immunodeficiency Virus Type Body Distribution Doxorubicin Concentration Butyl Cyanoacrylate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexandrova, L.G., Rubasheva, A.M., Zbarsky, V.B., Salamova., E.I. and Brazhnikova, M.G., 1986, Quantitative assay of doxorubicin by HPLC technique, Antibiot.Med.Biotechnol. 11:851.Google Scholar
  2. Alyautdin, R., Gothier, D., Petrov, V., Kharkevich, D. and Kreuter, J., 1995, Analgesic activity of the hexapeptide dalargin adsorbed on the surface of polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles, Europ.J.Pharm.Biopharm. 41:44.Google Scholar
  3. Alyautdin, R. N., Petrov, V. E., Langer, K., Berthold, A., Kharkevich, D. A., and Kreuter, J., 1997, Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles, Pharm.Res. 14:325.PubMedCrossRefGoogle Scholar
  4. Alyautdin, R. N., Tezikov, E. B., Ramge, P. Kharkevich, D. A., Begley, D. J., and Kreuter, J., 1998, Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80-coated polybutyl-cyanoacrylate nanoparticles: an in situ brain perfusion study, J.Microencapsul. 15:67.PubMedCrossRefGoogle Scholar
  5. Bender, A.R., von Briesen, H., Kreuter, J., Duncan, LB., and Rübsamen-Waigmann, H., 1996, Efficiency of nanoparticles as a carrier system for antiviral agents in human immunodeficiency virus-infected human monocytes/macrophages in vitro, Antimicrob. Agents Chemother. 40:1467.PubMedGoogle Scholar
  6. Bender, A., Schäfer, V., Steffan, A. M., Royer, C, Kreuter, J., Rübsamen-Waigmann, H., and Briesen, H., 1994, Inhibition of HIV in vitro by antiviral drug-targeting using nanoparticles, Res. Virol. 145:215.PubMedCrossRefGoogle Scholar
  7. Blunk, D.F., Hochstrasser, Müller, B.W., and Müller, R.H., 1993a, Differential adsorption: Effect of plasma protein adsorption patterns on organ distribution of colloidal drug carriers, Proceed. Intern. Symp. Control. Rel. Bioact. Mater. 20:256.Google Scholar
  8. Blunk, D.F., Hochstrasser, Sanchez, J.-C, Müller, B.W., and Müller, R.H., 1993b, Colloidal carriers for intravenous drug targeting: Plasma protein adsorption patterns on surface-modified latex particles evaluated by two-dimensional polyacrylamide gel electrophoresis, Electrophoresis. 14:1382.PubMedCrossRefGoogle Scholar
  9. Borchard, G., Audus, K. L., Shi, F., and Kreuter, J., 1994, Uptake of surfactant-coated poly(methyl-methacrylate)-nanoparticles by bovine brain microvessel endothelial cell monolayers, Int. J. Pharm. 110:29.CrossRefGoogle Scholar
  10. Chiannilkulchai, N., Ammoury, N., Caillou, B., Devissaguet, J.P., and Couvreur, P., 1990, Hepatic tissue distribution of doxorubicin-loaded nanoparticles after i.v. administration in reticulosarcoma M 5076 metastases-bearing mice, CancerChemother. Pharmacol. 26:122.Google Scholar
  11. Cordon-Cardo, C, O’Brien, J.P., Casals, D., Rittmann-Grauer, L., Biedler, J.L., Melamed, M.R., and Bertino, J.R., 1989, Multidrug resistance gene (P-glycoprotein) is expressed by endothelial cells at blood brain barrier sites, Proc. Natl. Acad. Sci. USA. 86:695.PubMedCrossRefGoogle Scholar
  12. Couvreur, P., Kante, B., Grislain, L., Roland, M., and Speiser, P., 1982, Toxicity of polyalkylcyanoacrylate nanoparticles II: Doxorubicin-loaded nanoparticles, J. Pharm. Sci. 71:790.PubMedCrossRefGoogle Scholar
  13. Couvreur, P., Grislain, L., Lenaerts, V., Brasseur, F., Guiot, P., and Biernacki, A., 1986, Biodegradable polymeric nanoparticles as drug carrier for antitumor agents; in: Polymeric Nanoparticles and Microspheres, P. Guiot and P. Couvreur eds., CRC Press, Boca Raton, pp. 27–93.Google Scholar
  14. Esser, R., von Briesen, H., Brugger, W., Ceska, M, Glienke, W. Müller, S., Rehm, A., Rübsamen-Waigmann, H., and Andreesen, R., 1991, Secretory repertoire of HIV-infected human monocytes/macrophages, Pathobiology 59:219.PubMedCrossRefGoogle Scholar
  15. Gartner, S., Markovitis, P., Markovitz, D.M., Kaplan, M.H., Gallo, R.C., and Popovic, M., 1986, The role of mononuclear phagocytes in HTLV-III/LAV infection, Science. 223:215.CrossRefGoogle Scholar
  16. Gendelman, H. E., Lipton, S.A., Tardieu, M., Bukrinsky, M.I., and Nottet, H.S.L.M., 1994, The neuropathogenesis of HIV-1 infection, J. Leukocyte Biol. 56:389.PubMedGoogle Scholar
  17. Kreuter, J., 1983, Evaluation of nanoparticles as drug-delivery systems III: Materials, stability, toxicity, possibilities of targeting, and use, Pharm. Acta. Helv. 58:242.PubMedGoogle Scholar
  18. Kreuter, J., Alyautdin, R. N., Kharkevich, D. A., and Ivanov, A. A., 1995, Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles), Brain Res. 674:171.PubMedCrossRefGoogle Scholar
  19. Kreuter, J., Petrov, V. E., Kharkevich, D. A., and Alyautdin, R. N., 1997, Influence of the type of surfactant on the analgesic effects induced by the peptide dalargin after its delivery across the blood-brain barrier using surfactant-coated nanoparticles, J. Controlled Rel. 49:81.CrossRefGoogle Scholar
  20. Kühnel, H., von Briesen, H., Dietrich, U., Adamski, M, Mix, D., Biesert, L., Kreutz, R., Immelmann, A., Henco, K., Meichsner, C, Andreesen, R., Gelderblom, H., and Rübsamen-Waigmann, H., 1989, Molecular cloning of two West African human immunodeficiency virus type 2 isolates that replicate well in macrophages: a Gambian isolate, from a patient with neurologic acquired immunodeficiency syndrome, and a highly divergent Ghanian isolate, Proc.Natl.Acad.Sci. USA. 86:2383.PubMedCrossRefGoogle Scholar
  21. Levy, J.A., 1993, Pathogenesis of human immunodeficiency virus infection, Microbiol. Rev. 57:183.PubMedGoogle Scholar
  22. Löbenberg, R., and Kreuter, J., 1996. Macrophage targeting of azidothymidine: A promising strategy for AIDS therapy, AIDS Res. Human Retrovir. 12:1709.CrossRefGoogle Scholar
  23. Löbenberg, R., Maas, J., and Kreuter, J., 1998, Improved body distribution of 14C-labelled AZT bound to nanoparticles in rats determined by radioluminography, J. Drug Target, 12:1709 (in press).Google Scholar
  24. McGann, K.A., Collmann, R., Kolson, D.L., Gonzalez-Scarano, F., Coukos, G., Coutifaris, C., Strauss, J.F., and Nathanson, N., 1994, Human immunodeficiency virus type 1 causes productive infection of macrophages in primary placental cell cultures. J. Infect. Dis. 169:746.PubMedCrossRefGoogle Scholar
  25. Milman, G., and Sharma, O., 1994, Mechanisms of HIV/SIV mucosal transmission, AIDS Res. Hum. Retroviruses. 10:1305.PubMedCrossRefGoogle Scholar
  26. Nerurkar, M.M., Burto, P.S., and Borchardt, R.T., 1996, The use of surfactants to enhance the permeability of peptides through Caco-2 cells by inhibition of an apically polarized efflux system, Pharm. Res. 13:528.PubMedCrossRefGoogle Scholar
  27. Nicholson, J.K., Cross, G.D., Callaway, C.S., and McDougal, J.S., 1986, In vitro infection of human T lymphotropic virus type III./Lymphadenophaty-associated virus (HTLV-III/LAC), J. Immunol, 137:323.PubMedGoogle Scholar
  28. Schäfer, V.M., von Briesen, H., Tröster, S.D., Andreesen, R., Kreuter, J., and Rübsamen-Waigmann, H., 1991, How to get antiviral drugs into HIV-infected cells? Phagocytosis of nanoparticles by human macrophages, Microbiologist 2:117.Google Scholar
  29. Schäfer, V., von Briesen, H., Andreesen, R., Steffan, A.-M., Royer, C., Tröster, S., Kreuter, J., and Rübsamen-Waigmann, H., 1992, Phagocytosis of nanoparticles by human immunodeficiency virus (HIV)-infected macrophages: A possibility for antivral drug targeting, Pharm. Res. 9:541.PubMedCrossRefGoogle Scholar
  30. Schröder, U., and Säbel, B.A., 1996, Nanoparticles, a drug carrier system to pass the blood-brain-barrier, permit central analgesic effects of i.v. dalargin injections, Brain Res. 710:121.PubMedCrossRefGoogle Scholar
  31. Tröster, S. D., Müller, U., and Kreuter, J., 1990, Modification of the body distribution of poly(methyl-methacrylate) nanoparticles in rats by coating with surfactants, Int. J. Pharm. 61:85.CrossRefGoogle Scholar
  32. Tröster, S.D., and Kreuter, J., 1992, Influence of the surface properties of low contact angle surfactants on the body distribution of 14C-poly(methyl methacrylate) nanoparticles, J. Microencapsul. 9:19.PubMedCrossRefGoogle Scholar
  33. Tröster, S.D., Wallis, K.H., Müller, R.H., and Kreuter, J., 1992, Correlation of the surface hydrophobicity of 14C-poly(methyl methacrylate) nanoparticles to their body distribution, J. Controlled Rel. 20:247.CrossRefGoogle Scholar
  34. Van’t-Wout, A.B., Kootstra, N.A., Mulder-Kampinga, G.A., Albrecht-van-Lent, N., Scherpbier, H.J., Veenstra, J., Boer, K., Coutinho, R.A., Miedema, F., and Schuitemaker, H., 1994, Macrophagetropic variants initiate human immunodeficiency virus type 1 infection after sexual, parenteral, and vertical transmission, J. Clin. Invest. 94:2060.CrossRefGoogle Scholar
  35. Von Briesen, H., Andreesen, R., Esser, R., Brugger, W., Meichsner, C, Becker, K., and Rübsamen-Waigmann, H., 1990, Infection of monocytes/macrophages by HIV in vitro, Res. Virol. 141:225.CrossRefGoogle Scholar
  36. Weiss, R.A., 1993, How does HIV cause AIDS?, Science 260:1273.PubMedCrossRefGoogle Scholar
  37. Woodcock, D.M., Jefferson, S., Linsenmeyer, M.E., Crowther, P.J., Chojnowski, G.M., Williams, B., and Bertoncello, I., 1990, Reversal of multidrug resistance phenotype with Cremophor EL, a common vehicle for water-insoluble vitamins and drugs, Cancer Res. 50: 4199.PubMedGoogle Scholar
  38. Woodcock, D.M., Linsenmeyer, M.E., Chojnowski, G., Kriegler, A.B., Nink, V., Webster, L.K., and Sawyer, W.H., 1992, Reversal of multidrug resistance by surfactants, Br. J. Cancer 66:62.PubMedCrossRefGoogle Scholar
  39. Zordan-Nudo, T., Ling, V., Liv, Z., and Georges, E., 1993, Effects of nonionic detergents on P-glycoprotein drug binding and reversal multidrug resistance, Cancer Res. 53:5994.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Jörg Kreuter
    • 1
  1. 1.Institut für Pharmazeutische Technologie, BiozentrumJ. W. Goethe-UniversitätFrankfurtGermany

Personalised recommendations