The Mononuclear Phagocyte System: Features Relevant to Interactions with Liposomes

  • Siamon Gordon
Part of the NATO ASI Series book series (NSSA, volume 300)


Macrophages (MØ) and closely related cells of the mononuclear phagocyte system, previously known as the reticulo-endothelial system (RES), are strategically placed in the body to recognise, remove and respond to particulates, as well as macromolecular ligands (Gordon, 1995). They are highly efficient phagocytes by virtue of their expression of a wide range of plasma membrane receptors for opsonised targets, as well as by direct recognition through so-called pattern recognition receptors (Medzhitov and Janeway, 1997). In addition, the cells are rich in cytoskeletal and other intracellular components which enhance their uptake efficiency. Their interactions with any artificial lipid-enveloped particles (eg. liposomes) will be desirable or a nuisance depending on the viewpoint of the investigator, but certainly inevitable, unless steps are taken to interfere with natural recognition mechanisms. The MØ within different organs in contact with blood, or at portals of entry such as the airway, gut or skin vary considerably in their potential for recognition and clearance of altered host, or foreign components. Their differentiation and activation status is also highly relevant to their capacity for clearance, as are the size, composition and route of entry of liposomes. In order to design better liposome-targeting protocols, it is necessary to learn about the basic cell biology of MØ in vitro and their heterogeneous functions in situ. Topics relevant to liposome biotechnology and applications will be considered from the viewpoint of the MØ.


Scavenger Receptor Mannose Receptor Plasma Membrane Receptor Mononuclear Phagocyte System Experimental Immunology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, L.A., and Aderem, A., 1996, Molecular definition of distinct cytoskeletal structures involved in complement-and Fc receptor-mediated phagocytosis in macrophages. J. Exp. Med. 184:627.PubMedCrossRefGoogle Scholar
  2. Baorto, D.M., Gao, Z., Malaviya, R., Dustin, M.L., van der Merwe, A., Lublin D.M., and Abraham. S.N., 1997, Survival of FimH-expressing enterobacteria in macrophages relies on glycolipid traffic. Nature 389:636.PubMedCrossRefGoogle Scholar
  3. Blackwell, J.M., Ezekowitz, R.A.B., Roberts, M.B., Channon, J.Y., Sim R.B., and Gordon, S., 1985, Macrophage complement and lectin-like receptors bind Leishmania in the absence of serum. J. Exp. Med. 162:324.PubMedCrossRefGoogle Scholar
  4. Clarke, S., Greaves, D.R., Chung, L-P., Tree, P., and Gordon, S., 1996, The human lysozyme promoter directs reporter gene expression to activated myelomonocytic cells in transgenic mice. Proc.Natl.Acad. Sci. USA 93:1434.PubMedCrossRefGoogle Scholar
  5. Coxon, A., Reu, P., Barkalow, F.J., Askari, S., Sharpe, A.H., von Andrian, U.H., Arnaout, M.A., and Mayadas T.N., 1996, A novel role for the β2 integrin CD11b/CD18 in neutrophil apoptosis: A homeostatic mechanism in inflammation. Immunity 5:653.PubMedCrossRefGoogle Scholar
  6. Crocker, P.R., Morris, L., and Gordon, S., 1988, Novel cell surface adhesion receptors involved in interactions between stromal macrophages and haematopoietic cells. J.Cell Sci. Suppl. 9:185.PubMedGoogle Scholar
  7. Crowley, M.T., Costello, P.S., Fitzer-Attas, C.J., Turner, M., Meng, F., Lowell, C., Tybulewicz, W.L.J., and DeFranco, A.L., 1997, A critical role for Syk in signal transduction and phagocytosis mediated by Fcγ receptors on macrophages. J. Exp. Med. 186:1027.PubMedCrossRefGoogle Scholar
  8. Elomaa, O., Kangas, M., Sahlberg, C, Tuukkanen, J., Sormunen, R., Liakka, A., Thesleff, I., Kraa, G., and Tryggvason, K., 1995, Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell 80:603.PubMedCrossRefGoogle Scholar
  9. Garni-Wagner, B.A., and Todd, R.F., III. 1997, Cluster designation antigens expressed on myeloid lineage cells, in: Weir’s Handbook of Experimental Immunology 5th ed., vol IV, L.A. Herzenberg, D.M. Weir, L.A. Herzenberg and C. Blackwell, eds., Blackwell Science Inc, Cambridge, MA.Google Scholar
  10. Gordon, S., 1995, Mononuclear phagocyte system and tissue homeostasis, in: Oxford Textbook of Medicine, D.J. Weatherall, J.G.G. Ledingham and D.A. Warrell, eds, Oxford University Press, Oxford.Google Scholar
  11. Gordon, S., 1997a, Overview: The myeloid system, in: Weir’s Handbook of Experimental Immunology, 5th ed., vol IV The integrated immune system. L.A. Herzenberg, D.M. Weir, L.A. Herzenberg and C. Blackwell, eds., Blackwell Science Inc, Cambridge, MA.Google Scholar
  12. Gordon, S., 1997 b, Weir’s Handbook of Experimental Immunology, 5th ed., L.A. Herzenberg, D.M. Weir, L.A. Herzenberg and C. Blackwell, eds., Blackwell Science Inc, Cambridge, MA.Google Scholar
  13. Gordon, S., 1998, Macrophage Activation in: Encyclopaedia of Immunology 2nd ed., D.J. Weatherall, J.G.G. Ledingham, and D.A. Warrell eds, Academic Press, London. In Press.Google Scholar
  14. Gordon, S., Lawson, L., Rabinowitz, S., Crocker, P. R., Morris L., and Perry, V.H., 1992, Antigen markers of macrophage differentiation in murine tissues, in: Current Topics in Microbiology and Immunology; Macrophage Biology and Activation, S. Russell and S. Gordon eds, Springer-Verlag, Berlin.Google Scholar
  15. Greenberg, S., and Silverstein, S.C., 1993, Phagocytosis in: Fundamental Immunology. 3rd ed. W. Paul, ed., Raven Press, Philadelphia.Google Scholar
  16. Hart, S.P., Dougherty, G.J., Haslett, C, and Dransfield, I., 1997, CD44 regulates phagocytosis of apoptotic neutrophil granulocytes, but not apoptotic lymphocytes, by human macrophages. J. Immunol. 159:919.PubMedGoogle Scholar
  17. Haworth, R., Platt, N., Keshav, S., Hughes, D., Darley, E., Suzuki, H., Kurihara, Y., Kodama, T., and Gordon, S., 1997, The Macrophage Scavenger Receptor Type A (SR-A) is expressed by activated macrophages and protects the host against lethal endotoxic shock. J. Exp. Med. 186:1431.PubMedCrossRefGoogle Scholar
  18. Haziot, A., Ferrero, E., Königen, F., Hijiya, N., Yamomoto, S., Silver, J., Stewart, C.L., and Goyert, S.M., 1996, Resistance to endotoxin shock and reduced dissemination of Gram-negative bacteria in CD14-deficient mice. Immunity 4:407.PubMedCrossRefGoogle Scholar
  19. Helenius, A., Mellman, I., Wall, D., and Hubbard, A., 1983, Endosomes. Trends in Biochemical Sciences 8:245.CrossRefGoogle Scholar
  20. Holness, C.L., da Silva., R.P., Fawcett, J., Gordon, S., and Simmons, D.L., 1993, Macrosialin, a mouse macrophage restricted glycoprotein, is a member of the lamp/lgp family. J. Biol.Chem. 268:9661.PubMedGoogle Scholar
  21. Inaba, K., Inaba, M., Romani, N., Aya, H., Deguchi, M., Ikehara, S., Muramatsu, S., and Steinman, R.M., 1992, Generation of large numbers of dendritic cells from mouse bone marrow culture supplemented with granulocyte/macrophage colony stimulating factor. J. Exp. Med. 176:1693.PubMedCrossRefGoogle Scholar
  22. Kraal, G., 1992, Cells in the marginal zone of the spleen. Int. Rev. Cytol. 132:31.PubMedCrossRefGoogle Scholar
  23. Krieger, M., 1997, The other side of scavenger receptors: pattern recognition for host defense. Curr. Opinion in Lipidology 8:275.CrossRefGoogle Scholar
  24. Law, S.K.A., and Reid, K.B.M., 1988, Complement, 1st ed., In Focus Series, D. Male, ed., IRL Press, Oxford.Google Scholar
  25. Lu, W., 1997, Collectins: collectors of micro-oganisms for the innate immune system. Bioessays 19:509.PubMedCrossRefGoogle Scholar
  26. Mato, M., Ookawara, S., Sakamoto, A., Aikawa, E., Ogawa, T., Mitsuhashi, U., Masuzawa, T., Suzuki, H., Honda, M., Yazaki, Y., Watanabe, E., Luoma, J., Yla-Herttuala, S., Fraser, I., Gordon, S., and Kodama, T., 1996, Involvement of specific macrophage-lineage cells surrounding arterioles in barrier and scavenger function in brain cortex. Proc.Natl.Acad.Sci. USA 93:3269.PubMedCrossRefGoogle Scholar
  27. McKnight, A.J., and Gordon, S., 1996, EGF-TM7: a novel subfamily of seven-transmembrane-region leukocyte cell-surface molecules. Immunology Today 17:283.PubMedCrossRefGoogle Scholar
  28. Medzhitov, R., and Janeway, C.A., Jr., 1997, Innate Immunity: impact on the adaptive immune response. Curr. Opin. in Immunol. 9:4.CrossRefGoogle Scholar
  29. Montaner, L.J., Collin, M., and Herbein, G., 1997, Human monocytes: isolation, cultivation and applications, in: Weir’s Handbook of Experimental Immunology, 5th ed., vol IV, L.A. Herzenberg, D.M. Weir, L.A. Herzenberg and C. Blackwell, eds., Blackwell Science Inc, Cambridge, MA.Google Scholar
  30. Nathan, C, 1987, Secretory products of macrophages. J. Clin. Invest. 79:319.PubMedCrossRefGoogle Scholar
  31. Perry, V.H., Andersson, P-B., and Gordon, S., 1993, Macrophages and inflammation in the central nervous system. Trends in Neurosciences 16:268.PubMedCrossRefGoogle Scholar
  32. Perry, V.H., and Gordon, S., 1991, Macrophages and the nervous system. Int Rev Cytol 125:203.PubMedCrossRefGoogle Scholar
  33. Platt, N., Suzuki, H., Kurihara, Y., Kodama, T., and Gordon, S., 1996, Role for the Class A macrophage scavenger receptor in the phagocytosis of apoptotic thymocytes. Proc.Natl.Acad.Sci USA. 93:12456.PubMedCrossRefGoogle Scholar
  34. Pontow, S.E., Kery, V., and Stahl, P.D., 1992, Mannose receptor. Int. Rev. Cytol. 137:221.CrossRefGoogle Scholar
  35. Rabinovitch, M., 1995, Phagocytosis. Trends in Cell Biology. 15:85.CrossRefGoogle Scholar
  36. Ramprasad, M.P., Fischer, W., Witztum, J.L., Sambrano, G.R., Quehenberger, O., Steinberg, D., 1995, The 94-to 97-kDa mouse macrophage membrane protein that recognises oxidized low density lipoprotein and phosphatidyl serine-rich liposomes is identical to macrosialin, the mouse homologue of human CD68. Proc.Natl.Acad.Sci. USA 92:9580.PubMedCrossRefGoogle Scholar
  37. Reid, D.M., Perry, V. H., Andersson, P-B., and Gordon, S., 1994, Mitosis and apoptosis of microglia in vivo induced by an anti-CR3 monoclonal antibody which crossed the blood-brain barrier. Neuroscience 56:529.CrossRefGoogle Scholar
  38. Ren, Y., Silverstein, R.L., Allen, J., Savill, J., 1995, CD36 gene transfer confers capacity for phagocytosis of cells undergoing apoptosis. J. Exp. Med. 181:1857.PubMedCrossRefGoogle Scholar
  39. Romani, N., Bhardwaj, N., Pope, M., 1997, Dendritic cells, in: Weir’s Handbook of Experimental Immunology, 5th ed., vol IV, L.A. Herzenberg, D.M. Weir, L.A. Herzenberg and C. Blackwell, eds., Blackwell Science Inc, Cambridge, MA.Google Scholar
  40. Suzuki, H., Kurihara, Y., Takeya, M., Kamada, N., Katoaka, M., Jishage, K., Ueda, O., Sakaguchi, H., Higashi, T., Suzuki, T., Takashima, Y., Kawabe, Y., Cynshi, O., Wada, Y., Honda, M., Kurihara, H., Aburatani, H., Doi, T., Matsumoto, A., Azuma, S., Noda, T., Toyoda, Y., Itakura, H., Ysazaki, Y., Horiuchi, S., Takahashi, K., Kar Kruijt, J., van Berkel, T., Steinbrecher, Urs P., Ishibashi, S., Maeda, N., Gordon, S., and Kodama, T., 1997, Resistance to atherosclerosis and susceptibility to infection in scavenger receptor knockout mice. Nature 386:292.PubMedCrossRefGoogle Scholar
  41. Van Rooijen, N., 1997, Selective depletion of macrophages by liposome-encapsulated drugs, in: Weir’s Handbook of Experimental Immunology, 5th ed., vol IV, L.A. Herzenberg, D.M. Weir, L.A. Herzenberg and C. Blackwell, eds., Blackwell Science Inc, Cambridge, MA.Google Scholar
  42. Walker, W.S., 1997, Mouse macrophage cell lines, in: Weir’s Handbook of Experimental Immunology, 5th ed., vol IV, L.A. Herzenberg, D.M. Weir, L.A. Herzenberg and C. Blackwell, eds., Blackwell Science Inc, Cambridge, MA.Google Scholar
  43. Wright, S.D., and Detmers, P.A., 1988, Adhesion-promoting receptors in phagocytes. J. Cell Science supp. 9: 99.Google Scholar
  44. Wu, L., Li, C-L., and Shortman, K., 1996, Thymic dendritic cell precursors: relationship to the T lymphocyte lineage and phenotype of the dendritic cell progeny. J.Exp Med. 184:903.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Siamon Gordon
    • 1
  1. 1.Sir William Dunn School of PathologyOxfordUK

Personalised recommendations