Steric Stabilization of Cationic Liposome-DNA Complexes: Influence on Morphology and Transfection Activity

  • Brigitte Sternberg
  • Keelung Hong
  • Weiwen Zheng
  • Demetrios Papahadjopoulos
Part of the NATO ASI Series book series (NSSA, volume 300)


Over the past few years, rapid progress has been made in controlling the in vivo delivery and expression of therapeutic genes (Blaese et al., 1995). Presently, viral-based carriers of DNA are still the most common method of gene delivery, although there is a strong research effort for developing synthetic non-viral vectors, in particular, cationic liposome-DNA complexes (CLDC) (Gao and Huang, 1995; Feigner et al., 1995; Lasic and Templeton, 1996). When compared to viral vectors, liposomal gene delivery systems offer several advantages, including the lack of viral gene elements, low immunogenic and inflammatory responses, potential for transfer of expression units of essentially unlimited size, and the possibility for cell-specific targeting (Stewart et al, 1992, Crystal, 1995.). Such preparations appeared initially to be ineffective for many in vivo applications because of instability in serum; therefore, much effort has been devoted to optimizing the complexes. This included not only synthesizing more efficient cationic lipids (Crystal, 1995; Solodin et al., 1995; Stephan et al., 1996), alternative helper lipids (Hong et al., 1997; Liu et al., 1997), as well as plasmid expression vectors (Hartikka et al., 1996), but also stabilizing the whole CLDC by polyamines and poly (ethylene glycol)-phospholipid conjugates (Hong et al., 1997). With more than 1μg protein expressed per gram of lung tissue (Hong et al., 1997; Liu et al., 1997, Templeton et al., 1997) trans-gene expression levels have recently approached those achievable with adenovirus.


Gene Delivery Mouse Serum Cationic Liposome Steric Stabilization Transfection Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baekmark, T.R., Elander, G., Lasic, D.D., and Sackmann, E., 1995. Conformational transitions in monolayers of phospholipid-polyethyleneoxide lipo-polymers and interaction forces with solid surfaces. Langmuir 11:3975.CrossRefGoogle Scholar
  2. Blaese, M., Blankenstein, T., Brenner, M., Cohen-Haguenauer, O., Gansbacher, B., Russel, S., Sorrentino, B., and Velu, T., 1995. Vectors in cancer therapy: how will they deliver? Cancer Gene Ther. 2:291.PubMedGoogle Scholar
  3. Boukhnikachvili, T., Aguerre-Chariol, O., Airiau, M., Lesieur, S., Ollivon, M., and Vacus, J., 1997. Structure of in-serum transfecting DNA-cationic lipid complexes. FEBS Lett. 409:188.PubMedCrossRefGoogle Scholar
  4. Crystal, R.G., 1995. Transfer of genes to humans: early lessons and obstacles to success. Science 270:404.PubMedCrossRefGoogle Scholar
  5. Dunlap, D.D., Maggi, A., Soria, M.R., and Monaco, L., 1997. Nanoscopic structure of DNA condensed for gene delivery. Nucl. Acids Res. 25:3095.PubMedCrossRefGoogle Scholar
  6. Feigner, P.L., Tsai, Y.J., Sukhu, L., Manthrope, M, Marshall, J. et al., 1995. Improved cationic lipid formulations for gene therapy. Ann. N.Y. Acad. Sci. 772:126.CrossRefGoogle Scholar
  7. Gabizon, A. and Papahadjopoulos, D., 1988. Liposome formulations with prolonged circulation time in blood and enhanced uptake in tumors. Proc. Natl. Acad. Sci. U.S.A. 85:6949.PubMedCrossRefGoogle Scholar
  8. Gao, X., and Huang, L., 1995. Cationic liposome-mediated gene transfer. Gene Therapy 2:710.PubMedGoogle Scholar
  9. Hartikka, J., Sawdey, M, Cornefert-Jensen, F., Mangalith, M., Barnhart, K., Nolasco, M., Norman, J., and Manthorpe, M., 1996. An improved plasmid DNA expression vector for direct injection into skeletal muscle. Hum. Gene Ther. 7:1205.PubMedCrossRefGoogle Scholar
  10. Hong, K., Zheng, W., Baker, A., and Papahadjopoulos, D., 1997. Stabilization of cationic liposome-plasmid DNA complexes by polyamines and poly(ethylene glycol)-phospholipid conjugates for efficient in vivo gene delivery. FEBS Lett 400:233.PubMedCrossRefGoogle Scholar
  11. Kuhl, T., Leckband, D.E., Lasic, D.D. and Israelachvili, J.N., 1994. Modulation of interaction forces between lipid bilayers exposing short-chained ethylene oxide headgroups. Biophys. J. 66:1479.PubMedCrossRefGoogle Scholar
  12. Lasic, D.D., and Templeton N.S., 1996. Liposomes in gene therapy. Advanced Drug Deliv. Rev. 20:221–266.CrossRefGoogle Scholar
  13. Lasic, D.D., Strey, H., Stuart, M.C.A., Podgornik, R., and Frederik, P.M., 1997. The structure of DNA-liposome complexes. J. Amer. Chem. Soc. 119:832.CrossRefGoogle Scholar
  14. Liu, Y., Mounkes, L.C., Liggitt, H.D., Brown, C.S., Solodin, I., Heath, T.D., and Debs, R.J., 1997. Factors influencing the efficiency of cationic liposome-mediyated intravenous gene delivery. Nature Biotechnology 15:167.PubMedCrossRefGoogle Scholar
  15. Papahadjopoulos, D., Allen, T.M., Gabizon, A., Mayhew, E., Huang, S.K., Lee, K.-D., Woodle, M.C., Lasic, D.D., Redemann, C, and Martin, F.J., 1991. Sterically stabilized liposomes: improvements in pharmacokinetics, and anti-tumor therapeutic efficacy. Proc. Natl. Acad. Sci. U.S.A. 88:11460.PubMedCrossRefGoogle Scholar
  16. Rädler, J.O., Koltover, I., Salditt, T., and Safinya, C.R., 1997. Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 275:810.PubMedCrossRefGoogle Scholar
  17. Solodin, I., Brown, C.S., Bruno, M.S., Chow, C.-Y., Jang, E.-H., Debs, R.J., and Heath, T.D., 1995. High efficiency in vivo gene delivery with a novel series of amphilic imidazolinium compounds. Biochemistry 34:13537.PubMedCrossRefGoogle Scholar
  18. Stephan, D.J., Yang, Z.-Y., Simari, R.D., San, H., Wheeler, C.J., Felgner, P.L., Gordon, D., Nabel, G.J., and Nabel, E.G., (1996). A novel cationic liposome DNA complex enhances the efficiency of arterial gene transfer in vivo. Hum. Gene Ther. 7:1803.PubMedCrossRefGoogle Scholar
  19. Sternberg, B., 1992. Freeze-fracture electron microscopy of liposomes. in: Liposome Technology, G. Gregoriadis, Ed; 2nd Ed, CRC Press, Inc., Boca Raton 21:363.Google Scholar
  20. Sternberg, B., Sorgi, F.L., and Huang, L., 1994. New structures in complex formation between DNA and cationic liposomes visualized by freeze-fracture electron microscopy. FEBS Lett. 356:361.PubMedCrossRefGoogle Scholar
  21. Sternberg, B., 1996. Morphology of cationic liposome/DNA complexes in relation to their chemical composition. J. Liposome Res. 6:515.CrossRefGoogle Scholar
  22. Sternberg, B., Hong, K., Zheng, W., and Papahadjopoulos, D., 1998. Optimization of cationic liposome-DNA complexes in vivo: correlation between transfection activity and morphology. submitted.Google Scholar
  23. Sterwart, M.J., Plautz, G.E., Del Buono, L., Yang, Z.Y., Xu, L., Gao, X., Huang, L., Nabel, E.G., and Nabel, G.J., 1992. Gene transfer in vivo with DNA-liposome complexes: safety and acute toxicity in mice. Hum. Gene Ther. 3:267.CrossRefGoogle Scholar
  24. Tarahovsky, Y.S., Khusainova, R.S., Gorelov, A.V., Nicolaeva, T.I., Deev, A.A., Dawson, A.K., and Ivanitsky, G.R., 1996. DNA initiates polymorphic structural transitions in lecithin. FEBS Lett. 390:133.PubMedCrossRefGoogle Scholar
  25. Templeton, N.S., Lasic, D.D., Frederik, P.M., Streey, H., Roberts, D.D., and Pavlakis, G.N., 1997. Improved DNA:liposome complexes for increased systemic delivery and gene expression. Nature Biotechnology 15:647.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Brigitte Sternberg
    • 1
  • Keelung Hong
    • 2
  • Weiwen Zheng
    • 2
  • Demetrios Papahadjopoulos
    • 2
  1. 1.Research InstituteCalifornia Pacific Medical CenterSan FranciscoUSA
  2. 2.Liposome Research LaboratoryCalifornia Pacific Medical CenterSan FranciscoUSA

Personalised recommendations