Physicochemical Characterization of DOTAP-Containing Lipoplexes by Fluorescent Probes: Relevance to Lipofection

  • Danielle Hirsch-Lerner
  • Nicolaas J. Zuidam
  • Yechezkel Barenholz
Part of the NATO ASI Series book series (NSSA, volume 300)


Delivering therapeutic genes to cells by their complexation with cationic liposomes to form lipoplexes has been shown to be efficient in vitro and in vivo (Behr, 1994; Ledley, 1995). The lipoplexes (plasmid DNA complexed with cationic liposomes) are safer than viral vectors (Mulligan, 1993; Crystal, 1995) for the following reasons: the absence of viral DNA, no constraint on DNA size, protection of DNA from degradation, and ability to target recombinant genes to specific cells. Therefore, lipoplexes might become the mainstream of research for gene therapy. The successful use of these lipoplexes will depend on their efficient delivery to cells and their ability to produce therapeutic levels of gene expression.


Lipid Bilayer Fluorescence Anisotropy Cationic Lipid Cationic Liposome Static Light Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barenholz, Y., and Amselem, S., 1993, Quality control assays in the development and clinical use of liposome based formulations, in: Liposome Technology, Vol. 1, 2nd ed., Gregoriadis, G., ed., CRC Press, Boca Raton.Google Scholar
  2. Barenholz, Y., Freire, E., Thompson, T.E., Correa-Freire, M.C., Bach, D., and Miller, I.R., 1983, Thermotropic behavior of aqueous dispersions of monoglucosylceramide (glucocerebroside)-dipalmitoyl phosphatidylcholine mixtures, Biochemistry 22:3497.CrossRefGoogle Scholar
  3. Behr, J.P., Demeneix, B., Loeffler, J.P., and Mutul, J.P., 1989, Efficient gene transfer into mammalian primary endocrine cells with lipopolyamine coated DNA, Proc. Natl. Acad Sci. U.S.A. 86:6982.PubMedCrossRefGoogle Scholar
  4. Behr, J.P., 1994, Gene transfer with synthetic cationic amphiphiles: prospects for gene therapy, Bioconj. Chem. 5:382.CrossRefGoogle Scholar
  5. Ben-Yashar, V., and Barenholz, Y., 1991, Characterization of core and surface of human plasma lipoproteins: A study based on the use of five fluorophores, Chem. Phys. Lipids 60:1.PubMedCrossRefGoogle Scholar
  6. Borenstain, V., and Barenholz, Y., 1993, Characterization of liposomes and other lipid assemblies by multiprobe fluorescence polarization, Chem. Phys. Lipids 64:117.PubMedCrossRefGoogle Scholar
  7. Buci, C, Parton, R.G., Mather, I.H., Stunnenberg, H., Simons, K., Hoflack, B., and Zerial, M., 1992, The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway, Cell 70:715.CrossRefGoogle Scholar
  8. Cevc, G., 1990, Membrane electrostatics, Biochim. Biophys. Acta 1031:311.PubMedCrossRefGoogle Scholar
  9. Chen, W., Carbone, F.R., and McCluskey, J., 1993, Electroporation and commercial liposomes efficiently deliver soluble protein into the MHC class I presentation pathway. Priming in vitro and in vivo for class I-restricted recognation of soluble antigen, J. Immunol. Methods 160:49.PubMedCrossRefGoogle Scholar
  10. Crystal, R.G., 1995, Tranfer of genes to humans: early lessons and obstacles to success, Science 270:404.PubMedCrossRefGoogle Scholar
  11. Cullis, P. R., van Dijck, P.W., de Kruijff, B., and de Gier, J., 1978, Effects of cholesterol on the properties of equimolar mixtures of synthetic phosphatidylethanolamine and phosphatidylcholine. A 31P NMR and differential scanning calorimetry study, Biochim. Biophys. Acta 513:21.PubMedCrossRefGoogle Scholar
  12. Dan, N., 1996, Formation of ordered domains in membrane-bound DNA, Biophys. J. 71:1267.PubMedCrossRefGoogle Scholar
  13. Dan, N., 1997, Multilamellar structures of DNA complexes with cationic liposomes, Biophys. J. 73:1842.PubMedCrossRefGoogle Scholar
  14. Dan, N., 1998, The structure of DNA complexes with cationic liposomes — cylindrical or lamellar? Biochim. Biophys. Acta, in press.Google Scholar
  15. Eastman, S.J., Siegel, C., Tousignant, J., Smith, A.E., Cheng, S.H., and Scheule, R.K., 1997, Biophysical characterization of cationic lipid: DNA complexes, Biochim. Biophys. Acta 1325:41.PubMedCrossRefGoogle Scholar
  16. Feigner, P.L., Gadeck, T.R., Holm, M., Roman, R., Chan, H.S., Wenz, M., Northrop, J.P., Ringold, M., and Danielsen, H., 1987, Lipofection: a highly efficient lipid-mediated DNA transfection procedure, Proc. Natl. Acad. Sci. U.S.A. 84:7413.CrossRefGoogle Scholar
  17. Feigner, J.H., Kumar, R., Sridhar, S.H., Wheeler, C.J., Feigner, J.H., Tsai, Y.J., Border, R., Ramsey, P., Martin, M., and Felgner, P.L., 1994, Enhanced gene delivery and mechanism studies with novel series of cationic lipid formulations, J. Biol. Chem. 269:2550.Google Scholar
  18. Felgner, P.L., Tsai, Y.J., and Felgner, J.H., 1996, Advances in the design and application of cytofectin formulations, in: Handbook of Nonmedical Applications of Liposomes, Vol. 4, Chapter 4, Lasic, D.D. and Barenholz, Y., eds., CRC Press, Boca Raton.Google Scholar
  19. Fernandez, M.S., and Fromherz, P., 1977, Lipoid pH indicators as probes of electrical potential and polarity in micelles, J. Phys. Chem. 81:1755.CrossRefGoogle Scholar
  20. Gao, X., and Huang, L., 1991, A novel cationic liposome reagent for efficient transfection of mammalian cells, Biochem. Biophys. Res. Commun. 179:280.PubMedCrossRefGoogle Scholar
  21. Gershon, H., Ghirlando, R., Guttman, S.B., and Minsky, A., 1993, Mode of formation and structural features of DNA-cationic liposome complexes used for transfection, Biochemistry 32:7143.PubMedCrossRefGoogle Scholar
  22. Gruen, D.W.R., Marcelja, S., and Parsegian, V.A., 1984, Water structure near the membrane surface, in: Cell Surface Dynamics: Concepts and Models, Perelson, A.S., DeLisi, C. and Wiegel, F.W., eds., Chapter 3, Marcel Dekker, New York.Google Scholar
  23. Gustafsson, J., Arvidson, G., Karlsson, G., and Almgren, M., 1995, Complexes between cationic liposomes and DNA visualized by cryo-TEM, Biochim. Biophys. Acta 1235:305.PubMedCrossRefGoogle Scholar
  24. Harned, H.S., and Owen, B.B., 1958, The Physical Chemistry of Electrolytic Solutions, Reinhold, New York.Google Scholar
  25. Hirsch-Lerner, D., and Barenholz, Y., 1998, Probing DNA-cationic lipid interactions with the fluorophore trimethylammonium diphenyl-hexatriene (TMADPH), Biochim. Biophys. Acta, in press.Google Scholar
  26. Ho, C, and Stubbs, CD., 1992, Hydration at the membrane protein-lipid interface, Biophys. J. 63:897.PubMedCrossRefGoogle Scholar
  27. Lasic, D.D., Strey, H., Stuart, M.C.A., Podgornick, R., and Fredrick, P.M., 1997, The structure of DNA-liposome complexes, J. Am. Chem. Soc. 119:832.CrossRefGoogle Scholar
  28. Ledley, F.D., 1995, Nonviral gene therapy: the promise of genes as pharmaceutical products, Hum. Gene Ther. 6:1129.PubMedCrossRefGoogle Scholar
  29. Lentz, B.R., 1989, Membrane “fluidity” as detected by diphenyl hexatriene probes, Chem. Phys. Lipids 50:171.CrossRefGoogle Scholar
  30. Leventis, R., and Silvius, J.R., 1990, Interactions of mammalian cells with lipid dispersions containing novel metabolizable cationic amphiphiles, Biochim. Biophys. Acta 1023:124.PubMedCrossRefGoogle Scholar
  31. Levine, A., Cantoni, G.L., and Razin, A., 1992, Methylation in the preinitiation domain suppresses gene transcription by an indirect mechanism, Proc. Natl. Acad. Sci. U.S.A. 89:10119.PubMedCrossRefGoogle Scholar
  32. Manning, G.S., 1980, Thermodynamic stability theory for DNA doughnut shapes induced by charge neutralization, Biopolymers 19:37.PubMedCrossRefGoogle Scholar
  33. May, S., and Ben-Shaul, A., 1997, DNA-Lipid complexes: Stability of honeycomb-like and spaghetti-like structures, Biophys. J. 73:2427.PubMedCrossRefGoogle Scholar
  34. Mulligan, R.C., 1993, The basic science of gene therapy, Science 260:926.PubMedCrossRefGoogle Scholar
  35. Ostrovsky, N., 1993, Liposome size measurements by photon correlation spectroscopy, Chem. Phys. Lipids 64:45.CrossRefGoogle Scholar
  36. Rädler, J.O., Koltover, I., Salditt, T., and Safinya, C.R., 1997, Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes, Science 275:810.PubMedCrossRefGoogle Scholar
  37. Sternberg, B., Sorgi, F.L., and Huang, L., 1994, New structures in complex formation between DNA and cationic liposomes visualized by freeze-fracture electron microscopy, FEBS Lett. 356:361.PubMedCrossRefGoogle Scholar
  38. Sternberg, B., 1996, Morphology of cationic liposome/DNA complexes in relation to their chemical composition, J. Liposome Res. 6:515.CrossRefGoogle Scholar
  39. Strauss, W.M., Dausman, J., Beard, C., Johnson, C., Lawrence, J.B., and Jaenisch, R., 1993, Germ line transmission of a yeast artificial chromosome spanning the murine alphal (I) collagen locus, Science 259:1904.PubMedCrossRefGoogle Scholar
  40. Szoka, F.C., Xu, Y., and Zelphati, O., 1996, How are nucleic acids released in cells from cationic lipid-nucleic acid, J. Liposome Res. 6:567.CrossRefGoogle Scholar
  41. Talmon, Y., 1996, Transmission electron microscopy of complex fluids: the state of the art, Ber. Bunsenges. Phys. Chem. 100:364.CrossRefGoogle Scholar
  42. Tatulian, S.A., 1993, in: Phospholipids Handbook, G. Cevc, ed., Marcel Dekker, New York.Google Scholar
  43. Tocanne, J.F., and Teissié, J., 1990, Ionization of phospholipids and phospholipid-supported interfacial lateral diffusion of protons in membrane model systems, Biochim. Biophys. Acta 1031:111.PubMedCrossRefGoogle Scholar
  44. Walker, C, Selby, M., Erickson, A., Cataldo, D., Valensi, J.P., and Van Nest, G.V., 1992, Cationic lipids direct a viral glycoprotein into the class I major histocompatibility complex antigen-presentation pathway, Proc. Natl. Acad Sci. U.S.A. 89:7915.PubMedCrossRefGoogle Scholar
  45. Wilschut, J., and Hoekstra, D., 1986, Membrane fusion: lipid vesicles as a model system, Chem. Phys. Lipids 40:145.PubMedCrossRefGoogle Scholar
  46. Zabner, J., Fasbender, A.J., Moninger, T., Poellinger, K.A., and Welsh, M.J., 1995, Cellular and molecular barriers to gene transfer by a cationic lipid, J. Biol. Chem. 270:18997.PubMedCrossRefGoogle Scholar
  47. Zhou, X., and Huang, L., 1994, DNA transfection mediated by cationic liposomes containing lipopolylysine: characterization and mechanism of action, Biochim. Biophys. Acta 1189:195.PubMedCrossRefGoogle Scholar
  48. Zuidam, N.J., and Barenholz, Y., 1997, Electrostatic parameters of cationic liposomes commonly used for gene delivery as determined by 4-heptadecyl-7-hydroxycoumarin, Biochim. Biophys. Acta 1329:211.PubMedCrossRefGoogle Scholar
  49. Zuidam, N.J., and Barenholz, Y., 1998, Electrostatic and structural properties of complexes involving plasmid DNA and cationic lipids commonly used for gene delivery, Biochim. Biophys. Acta, 1368:115.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Danielle Hirsch-Lerner
    • 1
  • Nicolaas J. Zuidam
    • 2
  • Yechezkel Barenholz
    • 1
  1. 1.Department of BiochemistryThe Hebrew University-Hadassah, Medical SchoolJerusalemIsrael
  2. 2.Department of PharmaceuticsUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations