Skip to main content

Use of Radiolabeled Liposomes for PEG-Liposome-Based Drug Targeting and Diagnostic Imaging Applications

  • Chapter
Book cover Targeting of Drugs 6

Part of the book series: NATO ASI Series ((NSSA,volume 300))

  • 123 Accesses

Abstract

The development of new targeted diagnostic and therapeutic imaging agents is at the cutting edge of diagnostic imaging (Torchilin, 1995). When a specific targeted agent accumulates in pathological tissue, the diagnostic imaging physician is able to determine simultaneously that a disease process is present and its location in the body. Usually, the uptake of a targeted agent is due to alteration of a physiological process, and hence a disease process may be detected prior to manifestation of any anatomical changes. Targeted diagnostic imaging, therefore, has the ability to be more sensitive for the detection of some disease processes in early stages. Although targeted diagnostic imaging agents are currently being developed for use in imaging modalities such as computed tomography (CT), magnetic resonance imaging (MRI) and ultrasound, nuclear medicine is the branch of diagnostic medicine with the longest history and the largest number of diagnostic and therapeutic targeted agents. This success in the field of nuclear medicine with targeted diagnostic imaging agents is probably due to the high signal response generated from an atomic decay which requires localization of only a small number of atoms at a particular body location in order for the photon emissions to be detected. While CT requires 10 to 100 mg of contrast agent per study and MRI requires 10-1 to 10-3, nuclear medicine imaging requires only 10-7 to 10-9 mg for diagnostic imaging (Wolf, 1995). Targeted agents developed for nuclear scintigraphy can be used in virtually all the organs of the body including bones, heart, liver, gallbladder, kidney, brain, soft tissues and tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Awasthi, V. D., Goins, B., Klipper, R., and Phillips, W. T., 1998. Dual radiolabeled liposomes: Biodistribution studies and localization of focal sites of infection in rats. Nuclear Medicine and Biology. 25:155.

    Article  PubMed  CAS  Google Scholar 

  • Boerman, O. C., Oyen, W. J. G., Bloois, L. v., Koenders, E. B., Meer, J. W. M. v. d., and Corstens, F. H. M., 1997a. Optimization of technetium-99m-labeled PEG liposomes to image focal infection: Effects of particle size and circulation time. Journal of Nuclear Medicine. 38:489.

    PubMed  CAS  Google Scholar 

  • Boerman, O. C., Oyen, W. J. G., Storm, G., Corvo, M. L., Boois, L. v., Meer, J. W. M. v. d., and Corstens, F. H. M., 1997b. Technetium-99m labelled liposomes to image experimental arthritis. Ann. Rheum. Dis. 56:369.

    Article  PubMed  CAS  Google Scholar 

  • Gabizon, A., Huberty, J., Straubinger, R. M., Price, D. C, and Papahadjpoulos, D., 1989. An improved method for in vivo tracing and imaging of liposomes using gallium-67-desferoxamine complex. J. Liposome Res. 1:123.

    Article  Google Scholar 

  • Gabizon, A., Price, D. C., Huberty, J., Bresalier, R. S., and Papahadjopoulos, D., 1990. Effect of liposome composition and other factors on the targeting of liposomes to experimental tumors: biodistribution and imaging studies. Cancer Research. 50:6371.

    PubMed  CAS  Google Scholar 

  • Goins, B., Klipper, R., Cliff, R. O., Blumhardt, R., and Phillips, W. T., 1993. Biodistribution and imaging studies of technetium-99m-labeled liposomes in rats with focal infection. Journal of Nuclear Medicine. 34:2160.

    PubMed  CAS  Google Scholar 

  • Goins, B., Phillips, W. T., and Klipper, R., 1996. Blood-pool imaging using technetium-99m-labeled liposomes. Journal of Nuclear Medicine. 37:1314.

    Google Scholar 

  • Hoffman, T., 1990. Anticipating, recognizing, and preventing hazards associated with in vivo use of monoclonal antibodies: special considerations related to human anti-mouse antibodies. Cancer Research. 50:1049S.

    PubMed  CAS  Google Scholar 

  • Kuus-Reichel, K., Grauer, L. S., Karavodin, L. M., Knott, C, Drusemeier, M., and Kay, N. E., 1994. Will immunogenicity limit the use, efficacy, and future development of therapeutic monoclonal antibodies. Clin Diagn Lab Immunol. 1:365.

    PubMed  CAS  Google Scholar 

  • Moghimi, S. M., and Rajabi-Siahboomi, A. R., 1996. Advanced colloid-based systems for efficient delivery of drugs and diagnostic agenst to the lymphatic tissues. Prog Biophys Molecular Biology. 65:221.

    Article  CAS  Google Scholar 

  • Morgan, J. R., Williams, K. E., Davies, R. L., Leach, K., Thomason, M., and Williams, L. A. P., 1981. Localisation of experimental staphylococcal abscesses by 99mTc-technetium-labelled liposomes. Journal of Medical Microbiology. 14:213.

    Article  PubMed  CAS  Google Scholar 

  • Neirinckx, R. D., Burke, J. F., Harrison, R. C, Foster, A. M., Andersen, A. R., and Lassen, N. A., 1988. The retention mechanism of technetium-99m-HM-PAO: Intracellular reaction with glutathione. J. Cerebral Blood Flow and Metabolism. S4–S12.

    Google Scholar 

  • Ogihara-Umeda, I., Sasaki, T., Kojima, S., and Nishigori, H., 1996. Optimal radiolabeled liposomes for tumor imaging. Journal of Nuclear Medicine. 37:326.

    PubMed  CAS  Google Scholar 

  • Ogihara-Umeda, I., Sasaki, T., Toyama, H., Oda, K., Senda, M., and Nishigori, H., 1997. Rapid diagnostic imaging of cancer using radiolabeled liposomes. Cancer Detection and Prevention. 21:490.

    PubMed  CAS  Google Scholar 

  • Olsen, J. O., Pozderac, R. V., Hinkle, G., Hill, T., O’Dorisio, T. M., Schirmer, W. J., Ellison, E. C, and O’Dorisio, M. S., 1995. Somatostatin receptor imaging of neuroendocrine tumors with indium-111 pentetreotide (Octreoscan). Seminars in Nuclear Medicine. 3:251.

    Article  Google Scholar 

  • Oussoren, C., and Storm, G., 1997. Lymphatic uptake and biodistribution of liposomes after subcutaneous injection: III. Influence of surface modification with poly(ethyleneglycol). Pharmacology Research. 14:1479.

    Article  CAS  Google Scholar 

  • Oyen, W. J. G., Boerman, O. C, Dams, E. T. M., Storm, G., Bloois, L. v., Koenders, E. B., Haelst, U. J. G. M.v., Meer, J. W. M. v. d., and Corstens, F. H. M., 1997. Scintigraphic evaluation of experimental colitis in rabbits. Journal of Nuclear Medicine: 72P.

    Google Scholar 

  • Oyen, W. J. G., Boerman, O. C., Storm, G., Bloois, L. V., Koenders, E. B., Crommelin, D. J. A., Meer, J. W. M. v. d., and Corstens, F. H. M., 1996. Labelled Stealth liposomes in experimental infection: An alternative to leukocyte scintigraphy? Nuclear Medicine Communications. 17:742.

    Article  PubMed  CAS  Google Scholar 

  • Patel, H. M., Boodle, K. M., and Vaughan-Jones, R., 1984. Assessment of the potential uses of liposomes for lymphoscintigraphy and lymphatic drug delivery. Failure of 99m-Technetium to represent intact liposomes in lymph nodes. Biochimica et Biophysica Acta. 801:76.

    Article  PubMed  CAS  Google Scholar 

  • Pauser, S., Reszka, R., Wagner, S., Wolf, K. J., Buhr, H. J., and Berger, G., 1997. Liposomes-encapsulated superparamagnetic iron oxide particles as markers in an MRI-guided search for tumor-specific drug carriers. Anticancer Drug Des. 12:125.

    PubMed  CAS  Google Scholar 

  • Phillips, W., and Goins, B., 1995. Targeted delivery of imaging agents by liposomes. In: Handbook of Targeted Delivery of Imaging Agents. V.P. Torchilin, ed., CRC Press, Boca Raton.

    Google Scholar 

  • Phillips, W. T., Rudolph, A. S., Goins, B., Timmons, J. H., Klipper, R., and Blumhardt, R., 1992. A simple method for producing a technetium-99m-labeled liposome which is stable in vivo. Nucl Med. Biol. 19:539.

    CAS  Google Scholar 

  • Presant, C. A., Ksionski, G., and Crossley, R., 1990. 111In-labeled liposomes for tumor imaging: clinical results of the international liposome imaging study. J. of Liposome Research. 1:431.

    Article  Google Scholar 

  • Reubi, J. C, 1997. Regulatory peptide receptors as molecular targets for cancer diagnosis and therapy. Q Journal Nuclear Medicine. 41:63.

    CAS  Google Scholar 

  • Richardson, V. J., Jeyasingh, K., Jewkes, R. F., Ryman, B. E., and Tattersall, M. H. N., 1978. Possible tumor localization of Tc-99m-labeled liposomes: effects of lipid composition, charge, and liposome size. Journal of Nuclear Medicine. 19:1049.

    PubMed  CAS  Google Scholar 

  • Rudolph, A. S., Klipper, R. W., Goins, B., and Phillips, W. T., 1991. In vivo biodistribution of a radiolabeled blood substitute: 99mTc-labeled liposome encapsulated hemoglobin in an anesthetized rabbit. Proc Natl Acad Sci USA. 88:10976.

    Article  PubMed  CAS  Google Scholar 

  • Seltzer, S. E., 1989. The role of liposomes in diagnostic imaging. Radiology. 171:19.

    PubMed  CAS  Google Scholar 

  • Tilcock, C., Yap, M, Szucs, M., Utkhede, D., 1994. PEG-coated lipid vesicles with encapsulated technetium-99mas blood pool agents for nuclear medicine. Nuclear Medicine and Biology. 21:165.

    Article  PubMed  CAS  Google Scholar 

  • Torchilin, V. P., 1995. Handbook of Targeted Delivery of Imaging Agents. CRC Press, Boca Raton.

    Google Scholar 

  • Torchilin, V. P., Narula, J., Halpern, E., and Khaw, B. A., 1996. Poly(ethylene glycol)-coated anti-cardiac myosin immunoliposomes: Factors influencing targeted accumulation in the infarcted myocardium. Biochim Biophys Acta. 1279:75.

    Article  PubMed  Google Scholar 

  • Trubetskoy, V. S., Cannillo, J. A., Milshtein, A., Wolf, G. L., and Torchilin, V. P., 1995. Controlled delivery of Gd-containing liposomes to lymph nodes: surface modification may enhance MRI contrast properties. Magnetic Resonance Imaging. 13:31.

    Article  PubMed  CAS  Google Scholar 

  • Unger, E. C., Lund, P. J., Shen, D. K., Fritz, T. A., Yellowhair, D., and New, T. E., 1992. Nitrogen-filled liposomes as a vascular US contrast agent: preliminary evaluation. Radiology. 185:453.

    PubMed  CAS  Google Scholar 

  • Velinova, M., Read, N., Kirby, C, and Gregoriadis, G., 1996. Morphological observations on the fate of liposomes in the regional lymph nodes after footpad injection into rats. Biochim Biophys Acta. 1299:207.

    Article  PubMed  CAS  Google Scholar 

  • Winzelberg, G. G., Grossman, S. J., Rizk, S., Joyce, J. M., Hill, J. B., Atkinson, D. P., Sudina, K., Anderson, K., McElwain, D., and Jones, A. M., 1992. Indium-111 monoclonal antibody B72.3 scintigraphy in colorectal cancer. Correlation with computed tomography, surgery, histopathology, immunohistology, and human immune response. 69:1656.

    CAS  Google Scholar 

  • Wolf, G. L., 1995. Targeted delivery of imaging agents: An overview. In: Handbook of Targeted Delivery of Imaging Agents. V.P. Torchilin, ed., CRC Press, Boca Raton.

    Google Scholar 

  • Woodle, M. C, 1993. 67Gallium-labeled liposomes with prolonged circulation: preparation and potential as nuclear imaging agents. Nuclear Medicine and Biology. 20: 149–155.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Phillips, W.T. (1998). Use of Radiolabeled Liposomes for PEG-Liposome-Based Drug Targeting and Diagnostic Imaging Applications. In: Gregoriadis, G., McCormack, B. (eds) Targeting of Drugs 6. NATO ASI Series, vol 300. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0127-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0127-9_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0129-3

  • Online ISBN: 978-1-4899-0127-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics