Use of Radiolabeled Liposomes for PEG-Liposome-Based Drug Targeting and Diagnostic Imaging Applications

  • William T. Phillips
Chapter
Part of the NATO ASI Series book series (NSSA, volume 300)

Abstract

The development of new targeted diagnostic and therapeutic imaging agents is at the cutting edge of diagnostic imaging (Torchilin, 1995). When a specific targeted agent accumulates in pathological tissue, the diagnostic imaging physician is able to determine simultaneously that a disease process is present and its location in the body. Usually, the uptake of a targeted agent is due to alteration of a physiological process, and hence a disease process may be detected prior to manifestation of any anatomical changes. Targeted diagnostic imaging, therefore, has the ability to be more sensitive for the detection of some disease processes in early stages. Although targeted diagnostic imaging agents are currently being developed for use in imaging modalities such as computed tomography (CT), magnetic resonance imaging (MRI) and ultrasound, nuclear medicine is the branch of diagnostic medicine with the longest history and the largest number of diagnostic and therapeutic targeted agents. This success in the field of nuclear medicine with targeted diagnostic imaging agents is probably due to the high signal response generated from an atomic decay which requires localization of only a small number of atoms at a particular body location in order for the photon emissions to be detected. While CT requires 10 to 100 mg of contrast agent per study and MRI requires 10-1 to 10-3, nuclear medicine imaging requires only 10-7 to 10-9 mg for diagnostic imaging (Wolf, 1995). Targeted agents developed for nuclear scintigraphy can be used in virtually all the organs of the body including bones, heart, liver, gallbladder, kidney, brain, soft tissues and tumors.

Keywords

Diagnostic Imaging Imaging Agent Popliteal Lymph Node Blood Substitute Blood Pool Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Awasthi, V. D., Goins, B., Klipper, R., and Phillips, W. T., 1998. Dual radiolabeled liposomes: Biodistribution studies and localization of focal sites of infection in rats. Nuclear Medicine and Biology. 25:155.PubMedCrossRefGoogle Scholar
  2. Boerman, O. C., Oyen, W. J. G., Bloois, L. v., Koenders, E. B., Meer, J. W. M. v. d., and Corstens, F. H. M., 1997a. Optimization of technetium-99m-labeled PEG liposomes to image focal infection: Effects of particle size and circulation time. Journal of Nuclear Medicine. 38:489.PubMedGoogle Scholar
  3. Boerman, O. C., Oyen, W. J. G., Storm, G., Corvo, M. L., Boois, L. v., Meer, J. W. M. v. d., and Corstens, F. H. M., 1997b. Technetium-99m labelled liposomes to image experimental arthritis. Ann. Rheum. Dis. 56:369.PubMedCrossRefGoogle Scholar
  4. Gabizon, A., Huberty, J., Straubinger, R. M., Price, D. C, and Papahadjpoulos, D., 1989. An improved method for in vivo tracing and imaging of liposomes using gallium-67-desferoxamine complex. J. Liposome Res. 1:123.CrossRefGoogle Scholar
  5. Gabizon, A., Price, D. C., Huberty, J., Bresalier, R. S., and Papahadjopoulos, D., 1990. Effect of liposome composition and other factors on the targeting of liposomes to experimental tumors: biodistribution and imaging studies. Cancer Research. 50:6371.PubMedGoogle Scholar
  6. Goins, B., Klipper, R., Cliff, R. O., Blumhardt, R., and Phillips, W. T., 1993. Biodistribution and imaging studies of technetium-99m-labeled liposomes in rats with focal infection. Journal of Nuclear Medicine. 34:2160.PubMedGoogle Scholar
  7. Goins, B., Phillips, W. T., and Klipper, R., 1996. Blood-pool imaging using technetium-99m-labeled liposomes. Journal of Nuclear Medicine. 37:1314.Google Scholar
  8. Hoffman, T., 1990. Anticipating, recognizing, and preventing hazards associated with in vivo use of monoclonal antibodies: special considerations related to human anti-mouse antibodies. Cancer Research. 50:1049S.PubMedGoogle Scholar
  9. Kuus-Reichel, K., Grauer, L. S., Karavodin, L. M., Knott, C, Drusemeier, M., and Kay, N. E., 1994. Will immunogenicity limit the use, efficacy, and future development of therapeutic monoclonal antibodies. Clin Diagn Lab Immunol. 1:365.PubMedGoogle Scholar
  10. Moghimi, S. M., and Rajabi-Siahboomi, A. R., 1996. Advanced colloid-based systems for efficient delivery of drugs and diagnostic agenst to the lymphatic tissues. Prog Biophys Molecular Biology. 65:221.CrossRefGoogle Scholar
  11. Morgan, J. R., Williams, K. E., Davies, R. L., Leach, K., Thomason, M., and Williams, L. A. P., 1981. Localisation of experimental staphylococcal abscesses by 99mTc-technetium-labelled liposomes. Journal of Medical Microbiology. 14:213.PubMedCrossRefGoogle Scholar
  12. Neirinckx, R. D., Burke, J. F., Harrison, R. C, Foster, A. M., Andersen, A. R., and Lassen, N. A., 1988. The retention mechanism of technetium-99m-HM-PAO: Intracellular reaction with glutathione. J. Cerebral Blood Flow and Metabolism. S4–S12.Google Scholar
  13. Ogihara-Umeda, I., Sasaki, T., Kojima, S., and Nishigori, H., 1996. Optimal radiolabeled liposomes for tumor imaging. Journal of Nuclear Medicine. 37:326.PubMedGoogle Scholar
  14. Ogihara-Umeda, I., Sasaki, T., Toyama, H., Oda, K., Senda, M., and Nishigori, H., 1997. Rapid diagnostic imaging of cancer using radiolabeled liposomes. Cancer Detection and Prevention. 21:490.PubMedGoogle Scholar
  15. Olsen, J. O., Pozderac, R. V., Hinkle, G., Hill, T., O’Dorisio, T. M., Schirmer, W. J., Ellison, E. C, and O’Dorisio, M. S., 1995. Somatostatin receptor imaging of neuroendocrine tumors with indium-111 pentetreotide (Octreoscan). Seminars in Nuclear Medicine. 3:251.CrossRefGoogle Scholar
  16. Oussoren, C., and Storm, G., 1997. Lymphatic uptake and biodistribution of liposomes after subcutaneous injection: III. Influence of surface modification with poly(ethyleneglycol). Pharmacology Research. 14:1479.CrossRefGoogle Scholar
  17. Oyen, W. J. G., Boerman, O. C, Dams, E. T. M., Storm, G., Bloois, L. v., Koenders, E. B., Haelst, U. J. G. M.v., Meer, J. W. M. v. d., and Corstens, F. H. M., 1997. Scintigraphic evaluation of experimental colitis in rabbits. Journal of Nuclear Medicine: 72P.Google Scholar
  18. Oyen, W. J. G., Boerman, O. C., Storm, G., Bloois, L. V., Koenders, E. B., Crommelin, D. J. A., Meer, J. W. M. v. d., and Corstens, F. H. M., 1996. Labelled Stealth liposomes in experimental infection: An alternative to leukocyte scintigraphy? Nuclear Medicine Communications. 17:742.PubMedCrossRefGoogle Scholar
  19. Patel, H. M., Boodle, K. M., and Vaughan-Jones, R., 1984. Assessment of the potential uses of liposomes for lymphoscintigraphy and lymphatic drug delivery. Failure of 99m-Technetium to represent intact liposomes in lymph nodes. Biochimica et Biophysica Acta. 801:76.PubMedCrossRefGoogle Scholar
  20. Pauser, S., Reszka, R., Wagner, S., Wolf, K. J., Buhr, H. J., and Berger, G., 1997. Liposomes-encapsulated superparamagnetic iron oxide particles as markers in an MRI-guided search for tumor-specific drug carriers. Anticancer Drug Des. 12:125.PubMedGoogle Scholar
  21. Phillips, W., and Goins, B., 1995. Targeted delivery of imaging agents by liposomes. In: Handbook of Targeted Delivery of Imaging Agents. V.P. Torchilin, ed., CRC Press, Boca Raton.Google Scholar
  22. Phillips, W. T., Rudolph, A. S., Goins, B., Timmons, J. H., Klipper, R., and Blumhardt, R., 1992. A simple method for producing a technetium-99m-labeled liposome which is stable in vivo. Nucl Med. Biol. 19:539.Google Scholar
  23. Presant, C. A., Ksionski, G., and Crossley, R., 1990. 111In-labeled liposomes for tumor imaging: clinical results of the international liposome imaging study. J. of Liposome Research. 1:431.CrossRefGoogle Scholar
  24. Reubi, J. C, 1997. Regulatory peptide receptors as molecular targets for cancer diagnosis and therapy. Q Journal Nuclear Medicine. 41:63.Google Scholar
  25. Richardson, V. J., Jeyasingh, K., Jewkes, R. F., Ryman, B. E., and Tattersall, M. H. N., 1978. Possible tumor localization of Tc-99m-labeled liposomes: effects of lipid composition, charge, and liposome size. Journal of Nuclear Medicine. 19:1049.PubMedGoogle Scholar
  26. Rudolph, A. S., Klipper, R. W., Goins, B., and Phillips, W. T., 1991. In vivo biodistribution of a radiolabeled blood substitute: 99mTc-labeled liposome encapsulated hemoglobin in an anesthetized rabbit. Proc Natl Acad Sci USA. 88:10976.PubMedCrossRefGoogle Scholar
  27. Seltzer, S. E., 1989. The role of liposomes in diagnostic imaging. Radiology. 171:19.PubMedGoogle Scholar
  28. Tilcock, C., Yap, M, Szucs, M., Utkhede, D., 1994. PEG-coated lipid vesicles with encapsulated technetium-99mas blood pool agents for nuclear medicine. Nuclear Medicine and Biology. 21:165.PubMedCrossRefGoogle Scholar
  29. Torchilin, V. P., 1995. Handbook of Targeted Delivery of Imaging Agents. CRC Press, Boca Raton.Google Scholar
  30. Torchilin, V. P., Narula, J., Halpern, E., and Khaw, B. A., 1996. Poly(ethylene glycol)-coated anti-cardiac myosin immunoliposomes: Factors influencing targeted accumulation in the infarcted myocardium. Biochim Biophys Acta. 1279:75.PubMedCrossRefGoogle Scholar
  31. Trubetskoy, V. S., Cannillo, J. A., Milshtein, A., Wolf, G. L., and Torchilin, V. P., 1995. Controlled delivery of Gd-containing liposomes to lymph nodes: surface modification may enhance MRI contrast properties. Magnetic Resonance Imaging. 13:31.PubMedCrossRefGoogle Scholar
  32. Unger, E. C., Lund, P. J., Shen, D. K., Fritz, T. A., Yellowhair, D., and New, T. E., 1992. Nitrogen-filled liposomes as a vascular US contrast agent: preliminary evaluation. Radiology. 185:453.PubMedGoogle Scholar
  33. Velinova, M., Read, N., Kirby, C, and Gregoriadis, G., 1996. Morphological observations on the fate of liposomes in the regional lymph nodes after footpad injection into rats. Biochim Biophys Acta. 1299:207.PubMedCrossRefGoogle Scholar
  34. Winzelberg, G. G., Grossman, S. J., Rizk, S., Joyce, J. M., Hill, J. B., Atkinson, D. P., Sudina, K., Anderson, K., McElwain, D., and Jones, A. M., 1992. Indium-111 monoclonal antibody B72.3 scintigraphy in colorectal cancer. Correlation with computed tomography, surgery, histopathology, immunohistology, and human immune response. 69:1656.Google Scholar
  35. Wolf, G. L., 1995. Targeted delivery of imaging agents: An overview. In: Handbook of Targeted Delivery of Imaging Agents. V.P. Torchilin, ed., CRC Press, Boca Raton.Google Scholar
  36. Woodle, M. C, 1993. 67Gallium-labeled liposomes with prolonged circulation: preparation and potential as nuclear imaging agents. Nuclear Medicine and Biology. 20: 149–155.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • William T. Phillips
    • 1
  1. 1.Department of RadiologyUniversity of Texas Health Science Center at San AntonioSan AntonioUSA

Personalised recommendations