Skip to main content

Interactions between Blood Components and Artificial Surfaces

  • Chapter
Targeting of Drugs 6

Part of the book series: NATO ASI Series ((NSSA,volume 300))

  • 121 Accesses

Abstract

Strategies for designing “stealth” therapeutic systems largely coincide with those governing the search for materials suitable to serve as artificial organs and prosthetic devices in contact with blood and other living tissues. In both cases, one strives to design surfaces that will avoid the triggering of inflammatory responses to the foreign material. Many times, there is also a need to link a homing device or bioactive ligand to the surface, in which case the mode of linking must leave the often marginally stable ligand in an active state. Beyond these common concerns, the biomaterials community also focuses on the specific tasks of avoiding a trigger of the clotting cascade and suppressing the potential for bacterial colonization, both issues related to the large size of the typical implant compared to that of a liposome or other circulating drug release vehicle. The following presentation will summarize ongoing efforts to devise some general techniques for preparing surfaces suitable to serve as biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, A.L., Fischer, G.C., Munoz, P.C., and Vroman, L., 1984, Convex-lens-on-slide: human plasma and blood in narrow spaces, J. Biomed. Materials Res. 18:643.

    Article  CAS  Google Scholar 

  • Andrade, J.D., and Hlady, V., 1987, Plasma protein adsorption: the big twelve, Ann. N.Y. Acad Sci. 516:158.

    Article  PubMed  CAS  Google Scholar 

  • Amiji, M., and Park, K., 1992, Prevention of protein adsorption and platelet adhesion on surfaces by PEO/PPO/PEO triblock copolymers, Biomaterials 13:682.

    Article  PubMed  CAS  Google Scholar 

  • Atha, D.H. and Ingham, K.C., 1981, Mechanism of precipitation of proteins by polyethylene glycols, J. Biol. Chem. 256:12108.

    PubMed  CAS  Google Scholar 

  • Bridgett, M.J., Davis, M.C., and Denyer, S.P., 1992, Control of staphylococcal adhesion to polystyrene surfaces by polymer surface modification with surfactants, Biomaterials 13:411.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Q., and Caldwell, K.D., 1997, Field-flow fractionation in the determination of rates of surfactant adsorption to colloidal substrates, J. Liq. Chrom. Rel. Tech. 20:2509.

    Article  CAS  Google Scholar 

  • Chinn, J.A., Posso, S.E, Horbett, T.A., and Ratner, B.D., 1991, Postadsorptive transitions in fibrinogen adsorbed to Biomer, J. Biomed. Materials Res., 25:535.

    Article  CAS  Google Scholar 

  • Elwing, H.B., Askendahl, A., and Lundström, I., 1990, Desorption of fibrinogen and gamma-globulin from solid surfaces induced by a non-ionic detergent, J. Coll. and Interface Sci., 128:296.

    Article  Google Scholar 

  • Elwing, H.B., Li, L., Askendahl, A.R., Nimeri, G.S., and Brash, J.L. 1995, Protein displacement phenomna in blood plasma and serum studied by the wettability gradient method and the lens on surface method, in: Proteins at Interfaces II: Fundamentals and Applications, T.A. Horbett and J.L. Brash, eds., American Chemical Society, Washington.

    Google Scholar 

  • Gölander, C.-G., Lin, Y.S., Hlady, V., and Andrade, J.D., 1990, Wetting and plasma-protein adsorption studies using surfaces with a hydrophobicity gradient, Colloids and Surfaces, 49:289.

    Article  Google Scholar 

  • Haynes, CA., and Norde, W., 1995, Structures and stabilities of adsorbed proteins, J. Colloid Interface Sci. 169:313.

    Article  CAS  Google Scholar 

  • Horbett, T.A. 1982, Protein adsorption on biomaterials, in: Biomaterials: Interfacial Phenomena and Applications, S.L. Cooper and N.A. Peppas, eds., American Chemical Society, Washington.

    Google Scholar 

  • Ilium, L., Jacobsen, L.O., Müller, R.H., Mak, E. and Davis, S.S., 1987, Surface characteristics and the interaction of colloidal particles with mouse peritoneal macrophages, Biomaterials 8:113.

    Article  Google Scholar 

  • Ingham, K.C., 1978, Precipitation of proteins with polyethylene glycol: Characterization of albumin, Arch. Biochem. Biophys. 186:106.

    Article  PubMed  CAS  Google Scholar 

  • Iverius, P.-H. and Laurent, T.C., 1967, Precipitation of some plasma proteins by the addition of dextran or polyethylene glycol, Biochim. Biophys. Acta 133:372.

    Google Scholar 

  • Janatova, J., Cheung, A.K., and Parker, C.J., 1991, Biomedical polymers differ in their capacity to activate complement, Complement Inflamm. 8:61.

    PubMed  CAS  Google Scholar 

  • Kiaei, D., Hoffman, A.S., Horbett, T.A. and Lew, K.R., 1995, Platelet and monoclonal antibody binding to fibrinogen adsorbed on glow-discharge deposited polymers, J. Biomed. Mater. Res. 29:729.

    Article  PubMed  CAS  Google Scholar 

  • Kieffer, N., 1996, Adhesive platelet glycoproteins and platelet function, in: Adhesion Receptors as Therapeutic Targets, M.A. Horton, ed., CRC Press, Boca Raton.

    Google Scholar 

  • Lassen, B., 1995, Studies of Competitive Protein Adsorption, Doctoral Thesis, University of Gothenburg, Gothenburg, Sweden.

    Google Scholar 

  • Li, J.-T., Carlsson, J., Lin, J.-N., and Caldwell, K.D., 1996, Chemical modification of surface active poly(ethylene oxide)-poly(propylene oxide) triblock copolymers, Bioconj. Chem. 7:592.

    Article  CAS  Google Scholar 

  • Li, J.-T. and Caldwell, K.D., 1991, Sedimentation field-flow fractionation in the determination of surface concentration of adsorbed materials, Langmuir 7:2034.

    Article  CAS  Google Scholar 

  • Li, J.-T., Caldwell, K.D. and Tan, J.S., 1991, Size analysis of a block-copolymer coated polystyrene latex, in: Particle Size Assessment and Characterization, T. Provder, ed., ACS Symposium Series, vol. 472, American Chemical Society, Washington.

    Google Scholar 

  • Li, J.-T., Caldwell, K.D. and Rapoport, N., 1994, Surface properties of Pluronic coated polymeric colloids, Langmuir 10:4475.

    Article  CAS  Google Scholar 

  • Li, J.-T., and Caldwell, K.D., 1996, Plasma protein interactions with Pluronic™ treated colloids, Colloids Surfaces B: Biointerfaces 7:9.

    Article  CAS  Google Scholar 

  • Lindon, J.N., McManama, G., Kushner, L., Merrill, E.W., and Salzman, E.W., 1986, Does the conformation of adsorbed fibrinogen dictate platelet interactions with artificial surfaces?, Blood 68:355.

    PubMed  CAS  Google Scholar 

  • Lu, D.R., and Park, K, 1991, Effect of surface hydrophobicity on the conformational changes in adsorbed fibrinogen, J. Colloid Interface, Sci. 144:271.

    Article  CAS  Google Scholar 

  • Lundström, I. and Elwing, H.B., 1990, Simple kinetic models for protein exchange reactions on solid surfaces, J. Colloid Interface Sci. 136:68.

    Article  Google Scholar 

  • Malmsten, M., and Lassen, B., 1994, Competitive adsorption at hydrophobic surfaces from binary protein systems, J. Colloid Interface Sci. 166:490.

    Article  CAS  Google Scholar 

  • Mori, Y, and Nagaoka., S., 1982, Polyethylene oxide chains, Trans. Am. Soc. Art. Int. Org. 28:459.

    CAS  Google Scholar 

  • Moghimi, S.M., Hawley, A.E., Christy, N.M., Gray, T., Ilium, L. and Davis, S.S., 1994, Surface engineered nanospheres with enhanced drainage into lymphatics and uptake by macrophages of the regional lymph nodes. FEBS Lett. 344:25.

    Article  PubMed  CAS  Google Scholar 

  • Müller, R.H., 1991, Colloidal Carriers for Controlled Drug Delivery and Targeting, CRC Press, Boca Raton.

    Google Scholar 

  • Nagaoka, S., Mori, Y., Takiuchi, H., Yokota, K., Tanzawa, H. and Nishiumi, S., 1984, Interaction between blood components and hydrogels with poly(oxyethylene) chains, in: Bolymers as Biomaterials, S.W. Shalaby, A.S. Hoffman, B.D. Ratner, and T.A. Horbett, eds., Plenum, New York.

    Google Scholar 

  • Neff, J.A., Caldwell, K.D., and Tresco, P.A., 1998, A novel method for surface modification to direct cell behavior, J. Biomed. Mater. Res., in press.

    Google Scholar 

  • Norde, W. and Lyklema, J., 1979, Thermodynamics of Protein Adsorption, J. Colloid Interface Sci. 71:350.

    Article  CAS  Google Scholar 

  • Norde, W., 1986, Adsorption of proteins from solution at the solid-liquid interface, Adv. Colloid Interface Sci. 24:267.

    Article  Google Scholar 

  • Norde, W., 1992, The behavior of proteins at interfaces, with special attention to the role of the structure stability of the protein molecule, Clin. Mater. 11:85.

    Article  CAS  Google Scholar 

  • Norman, M.E., Williams, P. and Ilium, L., 1993, In vivo evaluation of protein adsorption to sterically stabilised colloidal particles, J. Biomed. Mater. Res 27:861.

    Article  PubMed  CAS  Google Scholar 

  • Poison, A., Potgieter, G.M., Largier, J.F., Mears, G.E.F., and Joubert, F.J., 1964, The fractionation of protein mixtures by linear polymers of high molecular weight, Biochim. Biophys. Acta 82:463.

    Article  Google Scholar 

  • Salzman, E.W., Lindon, J., McManama, G., and Ware, J.A., 1987, Role of fibrinogen in activation of platelets, N.Y. Acad Sci. 516:184.

    Article  CAS  Google Scholar 

  • Savage, B., Bottini, E., and Ruggieri, Z.M., 1995, Interaction of integrin alpha IIb beta 3 with multiple fibrinogen domains during platelet adhesion, J. Biol. Chem. 270:28812.

    Article  PubMed  CAS  Google Scholar 

  • Sevastianov, V.I., Tremsina, Y.S., Eberhart, R.C., and Kim, S.W., 1995, Effect of protein competition on surface adsorption-density parameters of polymer-protein interfaces, in: Proteins at Interfaces II: Fundamentals and Applications, T.A. Horbett and J.L. Brash, eds., American Chemical Society, Washington.

    Google Scholar 

  • Slack, S.M. and Horbett, T.A., 1995, The Vroman effect, in: Proteins at Interfaces II: Fundamentals and Applications, T.A. Horbett and J.L. Brash, eds., American Chemical Society, Washington.

    Google Scholar 

  • Söderquist, M.E., and Walton, A.G., 1980, Structural changes in proteins adsorbed on polymer surfaces, J. Colloid Interface Sci. 75:386.

    Article  Google Scholar 

  • Tan, J.S., Butterfield, D.E., Voycheck, C.L., Caldwell, K.D., and Li, J.-T., 1993, Surface modification of nanoparticles by PEO-PPO block copolymers to minimize interactions with blood components and prolong blood circulation in rats, Biomaterials 14:823.

    Article  PubMed  CAS  Google Scholar 

  • Tang, L., and Eaton, J.W., 1993, Fibrin(ogen) mediates acute inflammatory responses to biomaterials, J. Exp. Med. 178:2147.

    Article  PubMed  CAS  Google Scholar 

  • Tang, L., Ugarova, T.P, Plow, E.F, and Eaton, J.W., 1996, Molecular determinants of acute inflammatory responses to biomaterials, J. Clin. Invest. 97:1329.

    Article  PubMed  CAS  Google Scholar 

  • Vroman, L., and Adams, A.L., 1969, Identification of rapid changes at plasma-solid interfaces, J. Biomed. Mater. Res. 3:43.

    Article  PubMed  CAS  Google Scholar 

  • Vroman, L., 1982, Protein/surface interaction, in:Biocompatible Polymers, M. Szycher, ed., Technomic Publ., Lancaster.

    Google Scholar 

  • Woodhouse, K.A., Skarja, G.A., Bishop, P., and Brash, J.L., 1995, Platelet interactions with cross-linked fibrin and thermally denatured fibrinogen surfaces, Trans. Soc. Biomat. 19:33.

    Google Scholar 

  • Wojciechowski, P.W. and Brash, J.L., 1993, Fibrinogen and albumin adsorption from human blood plasma and from buffer onto chemically functionalized silica substrates, Colloids and Surfaces B: Biointerfaces 1:107.

    Article  CAS  Google Scholar 

  • Yan, G., Li, J.-T., Huang, S.-C, and Caldwell, K.D., 1995, Calorimetric observations of protein conformation at solid-liquid interfaces, in: Proteins at Interfaces II: Fundamentals and Applications, T.A. Horbett and J.L. Brash, eds., American Chemical Society, Washington.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Caldwell, K.D. (1998). Interactions between Blood Components and Artificial Surfaces. In: Gregoriadis, G., McCormack, B. (eds) Targeting of Drugs 6. NATO ASI Series, vol 300. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0127-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0127-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0129-3

  • Online ISBN: 978-1-4899-0127-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics