• Sachiye Inouye
Part of the Biotechnology Handbooks book series (BTHA, volume 10)


On the basis of rRNA homologies and the biology of pseudomonads, most species of RNA group I among the five RNA groups, such as Pseudomonas aeruginosa, P. putida, P. fluorescens, and P. syringae, belong to this organism (Palleroni et al., 1973). These Pseudomonas species play key roles in the environment, including the biodegradation of natural and man-made toxic chemicals and the plant-bacteria interaction. An additional property of pseudomonads, particularly Pseudomonas aeruginosa, is their resistance to many antibiotics. Plasmids control some of those various important features in bacterial cells and promote the transfer of genetic information between different taxonomic groups of bacteria.


Pseudomonas Putida Incompatibility Group Integration Host Factor xylS Gene Degradative Plasmid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abril, M. A., and Ramos, J. L., 1993, Physical organization of the upper pathway operon promoter of the Pseudomonas TOL plasmid. Sequence and postional requirement for XylR-dependent activaton of transcription, Mol. Gen. Genet. 239:281–288.PubMedGoogle Scholar
  2. Abril, M. A., Michan, C., Timmis, K. N., and Ramos, J. L., 1989, Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway, J. Bacteriol. 171:6782–6790.PubMedGoogle Scholar
  3. Abril, M. A., Buck, M., and Ramos, J. L., 1991, Activation of the Pseudomonas TOL plasmid upper pathway operon. Identification of binding sites for the positive regulator XylR and for integration host factor protein, J. Biol. Chem. 266:15832–15838.PubMedGoogle Scholar
  4. Aramaki, H., Sagara, Y., Hosoi, M., and Horiuchi, T, 1993, Evidence for autoregulation of camR, which encodes a repressor for the cytochrome P-450cam hydrocylase operon on the Pseudomonas putida CAM plasmid, J. Bacteriol. 175:7828–7833.PubMedGoogle Scholar
  5. Aramaki, H., Sagara, Y., Kabata, H., Shimamoto, N., and Horiuchi, T., 1995, Purification and characterization of a cam repressor (CamR) for the cytochrome P-450cam hydroxylase operon on the Pseudomonas putida CAM plasmid, J. Bacteriol. 177:3120–3217.PubMedGoogle Scholar
  6. Ayres, E. K., Thomson, V.J., Merino, G., Balderes, D., and Figurski, D. H., 1993, Precise deletions in large bacterial genomes by vector-mediated excision (VEX). The trfA gene of promiscuous plasmid RK2 is essential for replication in several gram-negative hosts. J. Mol. Biol. 230:174–185.PubMedCrossRefGoogle Scholar
  7. Bagdasarian, M., and Timmis, K. N., 1982, Host:vector systems for gene cloning in Pseudomonas, Curr. Top. Microbiol. Immunol. 96:47–67.PubMedCrossRefGoogle Scholar
  8. Bagdasarian, M., Lurz, R., Rückert, B., Franklin, F. C. H., Bagdasarian, M. M., Frey, J., and Timmis, K. N., 1981, Specific purpose cloning vectors. II Broad host range, high copy number, RSF1010-derived vectors, and a host: vector system for gene cloning in Pseudomonas, Gene 16:237–243.PubMedCrossRefGoogle Scholar
  9. Bagdasarian, M., Bagdasarian, M. M., Lurz, R., Nordheim, A., Frey, A., and Timmis, K. N., 1982, Molecular and functional analysis of the broad host range plasmid RSF1010 and construction of vectors for gene cloning in Gram-negative bacteria, in: Bacterial Drug Resistance (S. Mitsuhashi, ed.) Japan Scientific Society Press, Tokyo, pp. 183–197.Google Scholar
  10. Barth, P. T. and Grinter, N.J., 1974, Comparison of the deoxyribonucleic acid molecular weights and homologies of plasmids conferring linked resistance to streptomycin and sulfonamides, J. Baceriol. 120:618–630.Google Scholar
  11. Bender, C. L., and Cooksey, D. A., 1986, Indigenous plasmids in Pseudomonas syringae pv. tomato: conjugative transfer and role in copper resistance, J. Bacteriol. 165:534–541.PubMedGoogle Scholar
  12. Bender, C. L., Malvick, D. K., and Mitchell, R. E., 1989, Plasmid-mediated production of the hytotoxin coronatine in Pseudomonas syringae pv. tomato, J. Baceriol. 171:807–812.Google Scholar
  13. Bender, C. L., Liyanage, H., Palmer, D., Ullrich, M., Young, S., and Mitchell, R., 1993, Characterizatoin of the genes controlling the biosynthesis of the polyketide phytotox-in coronatine including conjugation between coronafacic and coronamic acid, Gene 133:31–38.PubMedCrossRefGoogle Scholar
  14. Bestetti, G., and Galli, E., 1987, Characterization of a novel TOL-like plasmid from Pseudomonas putida involved in 1,2,4-trimethylbenzene degradation, J. Bacteriol. 169:1780–1783.PubMedGoogle Scholar
  15. Brinkmann, U., and Reineke, W., 1992, Degradation of chlorotoluene by in vivo construction hybrid strains: problems of enzyme specificity, induction and prevention of metapathway, FEMS Microbiol. Lett. 75:81–87.PubMedCrossRefGoogle Scholar
  16. Brown, N. L., Misra, T. K., Winnies, J. N., Schmidt, A., and Silver, S., 1985, The nucleotide sequences of the mercuric resistance operons of plasmid R100 and transposon Tn501: further evidencee for mer genes which enhance the activity of the mercuric ion detoxification system, Mol. Gen. Genet. 202:143–151.CrossRefGoogle Scholar
  17. Brown, N. L., Lund, P. A., and Ni’Bhriain, N., 1989, Mercury resistance in bacteria, in: Genetic bacterial diversity (D. A. Hopwood and K. F. Chater, eds.) Academic Press, London, pp. 175–195.CrossRefGoogle Scholar
  18. Bryan, L. E., 1984, Aminoglycoside resistance, in: Antimicrobial Drug Resistance (L. E. Bryan, ed.) Academic Press, New York, pp. 227–241.Google Scholar
  19. Burkardt, H.-J., Riess, G., and Puhler, A., 1979, Relationship of group P1 plasmid revealed by heroduplex experiments: RP1, RP4, R68, and RK2 are identical, J. Gen. Microbiol. 114:341–348.PubMedCrossRefGoogle Scholar
  20. Cao, X., Kolonay, J., Jr., Saxton, K. A., and Hartline, R. A., 1993, The OCT plasmid encodes D-lysine membrane transport and catabolic enzymes in Pseudomonas putida, Plasmid 30:83–89.PubMedCrossRefGoogle Scholar
  21. Chakrabarty, A. M., 1972, Genetic basis of the biodegradation of salicylate in Pseudomonas, J. Bacteriol. 112:815–823.PubMedGoogle Scholar
  22. Chakrabarty, A. M., 1976, Plasmids in Pseudomonas, Annu. Rev. Genet. 10:7–30.PubMedCrossRefGoogle Scholar
  23. Chakrabarty, A. M., Chou, G., and Gunsalus, I. C, 1973, Genetic regulation of octane dissimulation plasmid in Pseudomonas, Proc. Natl. Acad. Sci. USA 70:1137–1140.PubMedCrossRefGoogle Scholar
  24. Chen, C. Y., and Kado, C. I., 1994, Inhibition of Agrobacterium tumefaciens oncogenicity by the osa gene of pSa, J. Bacteriol. 176:5697–5703.PubMedGoogle Scholar
  25. Clark, D. L., Weiss, A. A., and Silver, S., 1977, Mercury and organomercurial resistance determined by plasmids in Pseudomonas, J. Bacteriol. 132:186–196.PubMedGoogle Scholar
  26. Close, S. M., and Kado, C. L, 1991, The osa gene of pSa encodes a 21.1-kilodalton protein that suppresses Agrobacterium tumefaciens oncogenicity, J. Bacteriol. 173:5449–5456.PubMedGoogle Scholar
  27. Close, S. M., and Kado, C. L, 1992, A gene near the plasmid pSa origin of replication encodes a nuclease, Mol. Microbiol. 6:521–527.PubMedCrossRefGoogle Scholar
  28. Cohen, J. D., and Bandurski, P. S., 1982, Chemistry and physiology of the bound auxins, Annu. Rev. Plant Physiol. 33:403–430.CrossRefGoogle Scholar
  29. Cruden, D. L., Wolfram, J. H., Rogers, R. D., and Gibson, D. T., 1992, Physiological properties of a Pseudomonas strain which grows wih p-xylene in a two-phase (organic-aqueous) medium, Appl. Env. Microbiol. 58:2723–2729.Google Scholar
  30. Darzins, A., and Chakrabarty, A. M., 1984, Cloning of genes controlling alginate biosynthesis from a mucoid cystic fibrosis isolte of Pseudomonas aeruginosa, J. Bacteriol. 159:9–18.PubMedGoogle Scholar
  31. Datta, N., Hedges, R. W., Shaw, E. J., Syker, R. B., and Richmond, M. W., 1971, Properties of an R factor from Pseudomonas aeruginosa, J. Bacteriol. 108:1244–1249.PubMedGoogle Scholar
  32. Davison, J., Brunei, F., Kaniga, K., and Chevalier, N., 1990, Recombinant DNA vectors for Pseudomonas, in: Pseudomonas: Biotransformations, Pathogenesis, and Evolving Biotechnology (S. Silver, A. M. Chakrabarty, B. Iglewski, and S. Kaplan, eds.) American Society for Microbiology, Washington, D. C, pp. 242–251.Google Scholar
  33. de Lorenzo, V., and Timmis, K. N., 1992, Specialized host-vector systems for the engineering of pseudomonas strins destined for environmental release, in: Pseudomonas: Molecular Biology and Biotechnology (E. Galli, S. Silver, and B. Witholt, eds.) American Society for Microbiology, Washington, D. C, pp. 415–428.Google Scholar
  34. de Lorenzo, V., Herrero, M., Metzke, M., and Timmis, K. N. 1991, An upstream XylR-and IHF-induced nucleoprotein complex regulates the sigma 54-dependent Pu promoter of TOL plasmid, EMBO J. 10:1159–1167.PubMedGoogle Scholar
  35. Ditta, G., Stanfields, S., Corbin, D., and Helinski, D. R., 1980, Borad host range DNA cloning system for gram-negative bacteria: Construction of a gene bank of Rhizobium meliloti, Proc. Natl. Acad. Sci. USA 77:7347–7351.PubMedCrossRefGoogle Scholar
  36. Downing, R., and Broda, P., 1979, A cleavage map of the TOL plasmid of Pseudomonas putida mt-2, Mol. Gen. Genet. 177:189–191.PubMedCrossRefGoogle Scholar
  37. Duggleby, C. J., Bayley, S. A., Worsey, M. J., Williams, P. A., and Broda, P., 1977, Molecular sizes and relationship of TOL plasmids in Pseudomonas, J. Bacteriol. 130:1274–1280.PubMedGoogle Scholar
  38. Dunn, N. W, and Holloway, B. W, 1971, Pleiotropy of p-fluorophenyl-alanine resistance and antibiotic hypersensitive mutants of Pseudomonas aeruginosa, Genet. Res. 18:185–197.PubMedCrossRefGoogle Scholar
  39. Duque, E., Ramos-Gonzales, M. L, Delgado, A., Contreras, A., Molin, S., and Ramos, J. L., 1992, Genetically engineered Pseudomonas strains for mineralization of aromatics: Survival, performance, gene transfer, and biological containment, in: Pseudomonas: Molecular Biology and Biotechnology (E. Galli, S. Silver, and B. Witholt, eds.) American Society for Microbiology, Washington, D. C, pp. 429–437.Google Scholar
  40. Eaton, R. W, 1994, Organization and evolution of naphthalene catabolic pathways: Sequence of the DNA encoding 2-hydroxychromene-2-carboxylate isomerase and trans-o-hydroxybenzylidenepyruvate hydratase-aldolase from the NAH7 plasmid, J. Bacteriol 176:7757–7762.PubMedGoogle Scholar
  41. Eggink, G., Engel, H., Meijer, W G., Otten, J., Kingma, J., and Witholt, B., 1988, Alkane utilizatoin in Pseudomonas oleovaorans. Structure and function of the regulatory locus alkR, J. Biol. Chem. 263:13400–13405.PubMedGoogle Scholar
  42. Farinha, M. A., and Kropinski, A. M., 1989, Construction of broad host range vectors for general cloning and promoter selection in Pseudomonas and Escherichia coli, Gene 77:205–210.PubMedCrossRefGoogle Scholar
  43. Farinha, M. A., and Kropinski, A. M., 1990, Construction of broad-host-range plasmid vectors for easy visible selection and anlysis of promoters, J. Bacteriol. 172:3496–3499.PubMedGoogle Scholar
  44. Fitzgibbon, J. E., and Braymer, H. D., 1990, Cloning of a gene from Pseudomonas sp. strain PG2982 conferring increased glyphosate resistance, Appl. Environ. Microbiol, 56:3382–3388.PubMedGoogle Scholar
  45. Foster, T. J., and Ginnity, F., 1985, Some mercurial resistance plasmids from different incompatibility groups specify merR regulatory functions that both repress and induce the mer operon of plasmid R100, J. Bacteriol. 162:773–776.PubMedGoogle Scholar
  46. Frantz, B., and Chakrabarty, A. M., 1986, Degradative Plasmids in Pseudomonas, in: The Bacteria, Vol. X, The Biology of Pseudomonas (J. K. Sokatch ed.) Academic Press, New York, pp. 295–323.CrossRefGoogle Scholar
  47. Frey, J., Bagdasarian, M., Feiss, D., Franklin, F. C. H., and Deshusses, J., 1983, Stable cosmid vectors that enable the introduction of cloned fragments into a wide range of gram-negative bacteria, Gene 24:299–308.PubMedCrossRefGoogle Scholar
  48. Frey, J., Bagdasarian, M. M., and Bagdasarian, M., 1992, Replication and copy number control of the broad-host-range plasmid RSF1010, Gene 113:101–106.PubMedCrossRefGoogle Scholar
  49. Friedman, A. M., Long, S. R., Brown, S. E., Buikema, W. J., and Ausbel, F. M., 1982, Construction of a broad host range cosmid vector and its use in the gentic analysis of Rhizobium mutants, Gene 18:289–296.PubMedCrossRefGoogle Scholar
  50. Früh, R., Watson, J. M., and Haas, D., 1983, Construction of recombination-deficient strains of Pseudomonas aeruginosa, Mol. Gen. Genet. 191:334–337.PubMedCrossRefGoogle Scholar
  51. Fujita, M., Aramaki, H., Horiuchi, T., and Amemura, A., 1993, Transcription of the cam operon and camR genes in Pseudomonas putida PpG1, J. Bacteriol. 175:6953–6958.PubMedGoogle Scholar
  52. Fukuda, H., Ogawa, T., Tazaki, M., Nagahama, K., Fujii, T., Tanase, S., and Morino, Y., 1992a, Two reactions are simultaneously catalyzed by a single enzyme: The argininedependent simultaneous formation of two products, ethylene and succinate, from 2-oxoglutarate by an enzyme from Pseudomonas syringae, Biochem. Biophys. Res. Commun. 188:483–489.PubMedCrossRefGoogle Scholar
  53. Fukuda, H., Ogawa, T., Ishihara, K., Fujii, T, Nagahama, K., Ornata, T., Inoue, Y., Tanase, S., and Morino, Y., 1992b, Molecular cloning in Escherichia coli, expression and nucleotide sequence of the gene for the ethylene-forming enzyme of Pseudomonas syringae pv. phaseolicola PK2, Biochem. Biophys. Res. Commun. 188:826–832.PubMedCrossRefGoogle Scholar
  54. Garriga, S., Calero, S., and Barbe, J., 1992, Nucleotide sequence analysis and comparison of the lexA genes from Salmonella typhimurium, Erwinia carotovora, Pseudomonas aeruginosa and Pseudomonas putida, Mol. Gen. Genet. 235:125–135.Google Scholar
  55. Gautier, F., and Bonewald, R., 1980, The use of plasmid R1162 and derivatives for gene cloning in the methanol-utilizing Pseudomonas AMI, Mol. Gen. genet. 178:375–380.PubMedCrossRefGoogle Scholar
  56. Glass, N. L., and Kosuge, T., 1986, Cloning of the gene for indoleacetic acid-lysine syn-thetase from Pseudomonas syringae subsp. savastanoi, J. Bacteriol. 166:598–603.PubMedGoogle Scholar
  57. Gnanamanickam, S. S., Starratt, A. N., and Ward, E. W. B., 1982, Coronatine production in vitro and in vivo and its relation to symptom development in bacterial blight of soybean, Can. J. Bot. 60:645–650.CrossRefGoogle Scholar
  58. Gomada, M., Inouye, S., Imaishi, H., Nakazawa, A., and Nakazawa, T., 1992, Analysis of an upstream regulatory sequence required for activation of the regulatory gene xylS in xylene metabolism directed by the TOL plasmid of Pseudomonas putida, Mol. Gen. Genet. 233:419–426.PubMedCrossRefGoogle Scholar
  59. Gomada, M., Imaishi, H., Miura, K., Inouye, S., Nakazawa, T., and Nakazawa, A., 1994, Analysis of DNA bend structure of promoter regulatory regions of xylene-metabolizing genes on the Pseudomonas TOL plasmid, J. Biochem. 116:1096–1104.PubMedGoogle Scholar
  60. Grund, A. D., and Gunsalus, I. C, 1983, Cloning of genes for naphthalene metabolism in Pseudomonas putida, J. Bacteriol. 156:89–94.PubMedGoogle Scholar
  61. Guerry, P., Van Embden, J., and Falkow, S., 1974, Molecular nature of two nonconjugative plasmids carrying drug resistance genes, J. Bacteriol. 177:619–630.Google Scholar
  62. Gunsalus, I. C, and Yen, K.-M., 1981, Metabolic plasmid organization and distribution, in: Molecular Biology, Pathogenicity and Ecology of Bacterial Plasmid (S. B. Levy, R. C. Clowes, and E. L. Koenig, eds.) Plenum, New York, pp. 499–509.CrossRefGoogle Scholar
  63. Haas, D., 1983, Genetic aspects of biodegradation by pseudomonads, Experientia 39:1199–1213.PubMedCrossRefGoogle Scholar
  64. Hansen, J. B., nad Olsen, R. H., 1978, Isolation of large bacterial plasmids and characterization of the P2 incompatibility group plasmids pMG1 and pMG5, J. Bacteriol. 135:227–238.PubMedGoogle Scholar
  65. Harayama, S., and Rekik, M., 1990, The meta cleavage operon of TOL degradative plasmid pWWO comprises 13 genes, Mol. Gen. Genet. 221:113–120.PubMedCrossRefGoogle Scholar
  66. Harayama, S., Leppik, R. A., Rekik, M., Mermod, N., Lehrbach, P. R., Reineke, W., and Timmis, K. N., 1985, Gene order of the TOL catabolic plasmid upper pathway operon and oxidation of both toluene and benzyl alcohol by the xylA product, J. Bacteriol. 167:455–461.Google Scholar
  67. Harayama, S., Rekik, M., Wubbolts, M., Rose, K., Leppik, R. A., and Timmis, K. N., 1989, Characterization of five genes in the upper-pathway operon of TOL plasmid pWW0 from Pseudomonas putida and identification of the gene products, J. Bacteriol. 171:5048–5055.PubMedGoogle Scholar
  68. Harring, V., Scholz, P., Scherzinger, E., Frey, J., Hatfull, F., Willets, N. W., and Bagdasarian, M., 1985, Protein RepC is involved in copy number control of the broad host range plasmid RSF1010, Proc. Natl. Acad. Sci. USA 82:6090–6094.CrossRefGoogle Scholar
  69. Hedstrom, R. C., Crider, B. P., and Eagon, R. G., 1982, Comparison of kinetics of active tetracycline uptake and active tetracycline efflux in sensitive and RP4-containing Pseudomonas pitida, J. Baceriol. 152:255–259.Google Scholar
  70. Higashi, A., Sakai, H., Honda, Y, Tanaka, K., Miao, D. M., Nakamura, T., Taguchi, Y, Komano, T., and Bagdasarian, M., 1994, Functional featues of oriV of the broad host range plasmid RSF1010 in Pseudomonas aeruginosa. Plasmid 31:196–200.PubMedCrossRefGoogle Scholar
  71. Holtel, A., Timmis, K. N., and Ramos, J. L., 1992, Upstream binding sequences of the XylR activator protein and integration host factor in the xylS gene promoter region of the Pseudomonas TOL plasmid, Nucl. Acids Res. 20:1755–1762.PubMedCrossRefGoogle Scholar
  72. Holtel, A., Goldenberg, D., Giladi, H., Oppenheim, A. B., and Timmis, K. N., 1995, Involvement of IHF protein in expression of the Ps promoter of the Pseudomonas putida TOL plasmid, J. Bacteriol. 177:3312–3315.PubMedGoogle Scholar
  73. Honda, Y, Sakai, H., Hiasa, H., Tanaka, K., Komano, T., and Bagdasarian, M., 1991, Functional division and reconstruction of a plasmid replication origin: Molecular dissection of the oriV of the broad-host-range plasmid RSF1010, Proc. Natl. Acad. Sci. USA 88:179–183.PubMedCrossRefGoogle Scholar
  74. Horn, J. M., Harayama, S., and Timmis, R. N., 1991, DNA sequence determination of the TOL plasmid (pWWO) xylGFJ genes of Pseudomonas putida: Implications for the evolution of aromatic catabolism, Mol. Microbiol. 5:2459–2474.PubMedCrossRefGoogle Scholar
  75. Ingram, L. C, Richmond, M. H., and Syker, R. B., 1973, Molecular characterization of the R factors implicated in the carbenicillin resistance of a sequence of Pseudomonas aeruginosa strains isolated from burns. Antimicrob. Agents Chemother. 3:279–288.PubMedCrossRefGoogle Scholar
  76. Inoue, A., and Horikoshi, 1989, A Pseudomonas thrives in high concentrations of toluene, Nature(London), 338:264–266.CrossRefGoogle Scholar
  77. Inouye, S., Ebina, Y, Nakazawa, A., and Nakazawa, T., 1984a, Nucleotide sequence surrounding transcription initiation site of xylABC operon on TOL plasmici of Pseudomonas putida, Proc. Natl. Acad. Sci. USA 81:1688–1691.PubMedCrossRefGoogle Scholar
  78. Inouye, S., Nakazawa, A., and Nakazawa, T., 1984b, Nucleotide sequence of the promoter region of the xylDEGF operon on TOL plasmid of Pseudomonas putida. Gene 29:323–330.PubMedCrossRefGoogle Scholar
  79. Inouye, S., Nakazawa A., and Nakazawa, T., 1985, Determination of the transcription initiation site and identification of the protein product of the regulatory gene xylR for xyl operons on the TOL plasmid, J. Bacteriol. 163:863–869.PubMedGoogle Scholar
  80. Inouye, S., Nakazawa, A., and Nakazawa, T., 1986, Nucleotide sequence of the regulatory gene xylS on the Pseudomonas putida TOL plasmid and identification of the protein product, Gene 44:235–242.PubMedCrossRefGoogle Scholar
  81. Inouye, S., Nakazawa, A., and Nakazawa, T., 1987a, Expression of the regulatory gene xylS on the TOL plasmid is poistively controlled by the xylR gene product, Proc. Natl Acad. Sci. USA 84:5182–5186.PubMedCrossRefGoogle Scholar
  82. Inouye, S., Nakazawa, A., and Nakazawa, T., 1987b, Overproduction of the xylS gene product and activation of the xylDLEGF operon on the TOL plasmid, J. Bacteriol. 169:3587–3592.PubMedGoogle Scholar
  83. Inouye, S., Nakazawa, A., and Nakazawa, T, 1988, Nucleotide sequence of the regulatory gene xylR of the TOL plasmid from Pseudomonas putida, Gene 66:301–306.PubMedCrossRefGoogle Scholar
  84. Inouye, S., Yamada, M., Nakazawa, A., and Nakazawa, T., 1989. Cloning and sequence analysis of the ntrA (rpoN) gene of Pseudomonas putida, Gene 85:145–152.PubMedCrossRefGoogle Scholar
  85. Inouye, S., Gomasa, M., Sangodkar, U. M., Nakazawa, A., and Nakazawa, T, 1990, Upstream regulatory sequence for transcriptional activator XylR in the first operon of xylene metabolism on the TOL plasmid, J. Mol. Biol. 216:251–260.PubMedCrossRefGoogle Scholar
  86. Ireland, C. R., 1983, Detailed restriction enzyme map of crown gall-suppressive IncW plasmid pSa, showing ends of deletion causing chloramphenicol sensitivity, J. Bacteriol. 155:722–727.PubMedGoogle Scholar
  87. Iyobe, S., tsunoda, M., and Mituhashi, S., 1994, Cloning and expression in Enterobacteriaceae of the extended-spectrum beta-lactamase gene from a Pseudomonas aeruginosa plasmid, FEMS Microbiol. Lett. 121:175–180.PubMedGoogle Scholar
  88. Jacoby, G. A., 1984, Resistance plasmids of Pseudomonas aeruginosa, in: Antimicrobial Drug Resistance (L. E. Bryan, ed.) Academic Press, New York, pp. 497–514.Google Scholar
  89. Jacoby, G. A., 1986, Resistance of Pseudomonas, in: The Bacteria, Vol. X, The Biology of Pseudomonas (J. K. Sokatch ed.) Academic Press, New York, pp. 265–292.CrossRefGoogle Scholar
  90. Jacoby, G. A., Jacob, A. E., and Hedges, R. W., 1976, Recombination between plasmids of incompatibility groups P1 and P2, J. Bacteriol. 127:1278–1285.PubMedGoogle Scholar
  91. Jacoby, G. A., Sutton, L., Knobel, L., Mammen, P., 1983, Properties of IncP-2 plamids of Pseudomonas spp. Antimicrob. Agents Chemother. 24:168–175.PubMedCrossRefGoogle Scholar
  92. Kao, J. C, Perry, K. L., and Kado, C. I., 1982, Indoleacetic acid complementation and its relation to host range specifying genes on the Ti plasmid of Agrobacterium tumefaciens, Mol. Gen. genet. 188:425–432.PubMedCrossRefGoogle Scholar
  93. Kasberg, T., Daubaras, D. L., Chakrabarty, A. M., Kinzelt, D., and Reineke, W., 1995, Evidence that operons tcb, tfd, and clc encode maleylacetate reductase, the fourth enzyme of the modified ortho pathway, J. Bacteriol. 177:3885–3889.PubMedGoogle Scholar
  94. Keen, N. T., and Buzzell, R. L, 1991, New disease resistance genes in soybean against Pseudomonas syringae pv. glycinea: Evidence that one of them interacts with a bacterial elicitor, Theor. Appl. Genet. 81:133–138.CrossRefGoogle Scholar
  95. Keil, H., Lebens, M. R., and Williams, P. A., 1985, TOL plasmid pWW15 contains two nonhomologous, independently regulated catechol 2,3-dioxygenase genes, J. Bacteriol. 63:248–255.Google Scholar
  96. Keil, H., Saint, C. M., and Williams, P. A., 1987, Gene organization of the first catabolic operon of TOL plasmid pWW53: Production of indigo by the xylA gene product, J. Bacteriol. 169:764–770.PubMedGoogle Scholar
  97. Kenyon, J. S., and Turner, J. R., 1992, The stimulation of ethylene synthesis in Nicotiana tabacum leaves by the phytotoxin coronatine, Plant Physiol. 100:219–224.PubMedCrossRefGoogle Scholar
  98. Kessler, B., de Lorenzo, V., and Timmis, K. N., 1993, Identification of a cic-acting sequence within the Pm promoter of the TOL plasmid which confers XylS-mediated responsiveness to substituted benzoates, J. Mol. Biol. 230:699–703.PubMedCrossRefGoogle Scholar
  99. Kessler, B., Herrero, M., Timmis, K. N., and de Lorenzo, V., 1994a, Genetic evidence that the XylS regulator of the Psendomonas TOL meta operon controls the Pm promoter through weak DNA-protein interactions, J. Bactriol. 176:3171–3176.Google Scholar
  100. Kessler, B., Timmis, K. N., and de Lorenzo, V., 1994b, The organization of the Pm promoter of the TOL plasmid reflects the structure of its cognate activator protein XylS, Mol. Gen. Genet. 244:596–605.PubMedCrossRefGoogle Scholar
  101. Kim, Y. S., and Kim, E. J., 1994, A plasmid responsible for malonate assimilation in Pseudomonas fluorescens, Plasmid, 32:219–221.PubMedCrossRefGoogle Scholar
  102. Kobayashi, D. Y., Tamaki, S. J., and Keen, N. T., 1989, Cloned avirulence genes from the tomato pathogen Pseudomonas syringae pv. tomato confer cultivar specificity on soybeans, Proc. Natl. Acad. Sci. USA 86:157–161.PubMedCrossRefGoogle Scholar
  103. Kobatake, E., Niimi, T, Haruyama, T, Ikariyama, Y, and Aizawa, M., 1995, Biosensing of benzene derivatives in the environment by luminescent Escherichia coli, Biosensors & Bioelectronics, 10:601–605.CrossRefGoogle Scholar
  104. Koga, H., Aramaki, H., Yamaguchi, E., Takeuchi, K., Horiuchi, T, and Gunsalus, I. C., 1986, camR, a negative regulator locus of the cytochrome P-450cam hydroxylase operon, J. Bacteriol. 166:1089–1095.PubMedGoogle Scholar
  105. Koga, H., Yamaguchi, E., Matsunaga, K., Aramaki, H., and Horiuchi, T, 1989, Cloning and nucleotide sequences of NADH-putidaredoxin reductase gene (camA) and putidaredoxin gene (camB) involved in cytochrome P-450cam hydroxylase of Pseudomonas putida, J. Biochem. 106:831–836.PubMedGoogle Scholar
  106. Kohler, T., Haayama, S., Ramos, J. L., and Timmis, K. N., 1989, Involvement of Pseudomonas putida RpoN sigma factor in regulation of varous metabolic functions, J. Bacteriol. 171:4326–4333.PubMedGoogle Scholar
  107. Kok, M., Oldenhuis, R., van der Linden, M. P., Raatjes, P., Kingma, J., van Lelyveld, P. H., and Witholt, B., 1989, The Pseudomonas oleovorans alkane hydroxylase gene, J. Biol. Chem. 264:5435–5441.PubMedGoogle Scholar
  108. Kok, M., Shaw, J. P., and Harayama, S., 1992, Comparison of two hydrocarbon monooxygenases of Pseudomonas putida, in: Pseudomonas: Molecular Biology and Biotechnology (E. Galli, S. Silver, and B. Witholt, eds.) American Society for Microbiology, Washington, D. C, pp. 214–222.Google Scholar
  109. Kokjohn, T. A., and Miller, R. V., 1994, IncN plasmids mediate UV resistance and errorprone repair in Pseudomonas aeruginosa PAO, Microbiol. 140:43–48.CrossRefGoogle Scholar
  110. Konyencsni, W, and Deretic, V., 1988, Borad host range plasmid and M13 bacteriophage-derived vectors for promoter analysis in Escherichia coli and Pseudomonas aeruginosa, Gene 74:357–386.CrossRefGoogle Scholar
  111. Kornacki, J. A., West, A. H., and Firshein, W, 1984, Proteins encoded by the trans-acting replication and maintenance regions of broad host range plasmid RK2, Plasmid 11:48–57.PubMedCrossRefGoogle Scholar
  112. Krishnapillai, V., Nash, J., and Lanka, E., 1984, Insertion mutations in the promiscuous IncP-1 plasmid R18 which affect its host range between Pseudomonas species, Plasmid 12:170–180.PubMedCrossRefGoogle Scholar
  113. Kues, U., and Stahl, U., 1989, Replication of plasmids in gram-negative bacteria, Microbiol. Rev. 53:491–516.PubMedGoogle Scholar
  114. Kunz, D. A., and Chapman, P. J., 1981, Isolation and characterization of spontaneously occurring TOL plasmid mutants of Pseudomonas putida HS1, J. Bacteriol. 146:952–964.PubMedGoogle Scholar
  115. Lanka, E., Kröger, M., and Fürste, J. P., 1984, Plamid RP4 encodes two forms of a DNA primase, Mol. Gen. Genet. 194:65–72.PubMedCrossRefGoogle Scholar
  116. Leemans, J., Langenakens, J., De Greve, H., Deblaere, R., Van Montague, M., and Schell, J., 1982, Broad-host-range cloning vectors derived from the W-plasmid Sa, Gene 19:361–364.PubMedCrossRefGoogle Scholar
  117. Lehrbach, P., Kung, A. H. C, and Lee, B. T. O., 1977a, Loss of ultraviolet light-induced mutability in Pseudomonas aeruginosa carrying mutant R plasmids, J. Gen. Microbiol. 101:135–141.CrossRefGoogle Scholar
  118. Lehrbach, P., Kung, A. H. C, Lee, B. T. O., and Jacoby, G. A., 1977b, Plasmid modification of radiation and chemical mutagen sensitivity in Pseudomonas aeruginosa. J. Gen. Microbiol. 98:167–176.PubMedCrossRefGoogle Scholar
  119. Lehrbach, P. R., Zeyer, J., Reineke, W., Knackmuss, H. J., and Timmis, K. N., 1984, Enzyme recruitment in vitro: Use of cloned genes to extend the range of haloaromatics degraded by Pseudomonas sp. strain B13, J. Bacteriol. 158:1025–1032.PubMedGoogle Scholar
  120. Li, X. Z., Livermore, D. M., and Nikaido, H., 1994a, Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa; resistance to tetracycline, chloramphenicol, and norfloxacin, Antimicrob. Agents Chemother. 38:1732–1741.PubMedCrossRefGoogle Scholar
  121. Li, X. Z., Ma, D., Livermore, D. M., and Nikaido, H., 1994b, Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: Active efflux as a contributing factor to beta-lactam resistance, Antimicrob. Agents Chemother. 38:1742–1752.PubMedCrossRefGoogle Scholar
  122. Loper, J. E., and Kado, C. I., 1979, Host range conferred by the virulence-specifying plasmid of Abrobacterium tumefaciens, J. Bacteriol. 139:591–596.PubMedGoogle Scholar
  123. Marques, S., and Ramos, J. L., 1993, Transcriptional control of the Pseudomonas putida TOL plasmid catabolic pathways, Mol. Microbiol. 9:923–929.PubMedCrossRefGoogle Scholar
  124. Matsuhashi, Y., Yagisawa, M., Kondo, S., Takeuchi, T., and Umezawa, H., 1975, Aminoglycoside 3′-phosphotransferases I and II in Pseudomonas aeruginosa, J. Antibiot. 28:442–447.PubMedCrossRefGoogle Scholar
  125. Matthew, M., 1979, Plasmid-mediated β-lactamase of gram-negative bacteria: Properties and distribution, J. Antimicrob. Chemother. 5:349–358.PubMedCrossRefGoogle Scholar
  126. McCombie, W. R., Hansen, J. B., Zylstra, G. J., Maurer, B., and Olsen, R. H., 1983, Pseudomonas streptomycin resistance transposon associated with R-plasmid mobilization, J. Bacteriol. 155:40–48.PubMedGoogle Scholar
  127. McDaniel, C. S., Harper, L. L., and Wild, J. R., 1988, Cloning and sequencing of a plasmidborne gene (opd) encoding a phosphotriesterase, J. Bacteriol. 170:2306–2311.PubMedGoogle Scholar
  128. Mellano, M. A., and Cooksey, D. A., 1988, Induction of the copper resistance operon from Pseudomonas syringae pv. tomato, J. Bacteriol. 170:4399–4401.PubMedGoogle Scholar
  129. Menn, F. M., Applegate, B. M., and Sayler, G. S., 1993, NAH plasmid-mediated catabolism of anthracene and phenanthrene to naphthoic acids, Appl. Env. Microbiol. 59:1938–1942.Google Scholar
  130. Mermod, N., Lehrbach, P. R., Reineke, W., and Timmis, K. N., 1984, Transcription of the TOL plasmid toluate catabolic pathway operon of Pseudomonas putida is determined by a pair of coordinately and positively regulated overlapping promoters, EMBO J. 3:2461–2466.PubMedGoogle Scholar
  131. Mermod, M., Lehrbach, P. R., Don, R. H., and Timmis, K. N., 1986a, Gene cloning and manipulation in Pseudomonas, in: The Bacteria, Vol.X, The Biology of Pseudomonas (J. K. Sokatch, ed.) Academic Press, New York, pp. 325–355.CrossRefGoogle Scholar
  132. Mermod, N., Ramos, J. L., Lehrbach, P. R., and Timmis, K. N., 1986b, Vectors for regulated expression of cloned genes in a wide range of gram-negative bacteria, J. Bacteriol. 167:447–454.PubMedGoogle Scholar
  133. Mermod, N., Ramos, J. L., Bairoch, A., and Timmis, K. N., 1987, The xylS gene positive regulator of TOL plasmid pWW0: Identification, sequence analysis, and overproduction leading to constitutive expression of meta cleavage operon, Mol. Gen. Genet. 207:349–354.PubMedCrossRefGoogle Scholar
  134. Miao, D. M., Sakai, H., Tanaka, K., Honda, Y., Komano, T., and Bagdasarian, M., 1995, Functional distinction among structural subsections in the specific priming signal for DNA replication of the broad-host-range plasmid RSF1010, Biosci. Biotechnol. Biochem. 59:920–921.PubMedCrossRefGoogle Scholar
  135. Midland, S. L., Keen, N. T, Sims, J. J., Midland, M. M., Stayton, M. M., Burton, V., Smith, M. J., Mazzola, E. P., Graham, K. J., and Clardy, J., 1993, The structures of syringolides 1 and 2, novel C-glycosidic elicitors from Pseudomonas syringae pv. tomato, J. Org. Chem. 58:2940–2945.CrossRefGoogle Scholar
  136. Miller, R. V., and Kokjohn, T. A., 1990, General microbiology of recA: Environmental and evolutionary significance, Annu. Rev. Microbiol. 44:265–294.CrossRefGoogle Scholar
  137. Mills, S. D., Jaslavich, C. A., and Cooksey, D. A., 1993, A two-component regulatory system required for copper-inducible expression of the copper resistance operon of Pseudomonas syringae, J. Bacteriol. 175:1656–1664.PubMedGoogle Scholar
  138. Morales, V., Bagdasarian, M. M., and Bagdasarian, M., 1990, Promiscuous plasmids of the IncQ group: Mode of replication and use for gene cloning in gram-negative bacteria, in: Pseudomonas: Biotransformations, Pathogenesis, and Evolving Biotechnology (S. Silver, A. M. Chakrabarty, B. Iglewski, and S. Kaplan, eds.) American Society for Microbiology, Washington, D. C, pp. 229–241.Google Scholar
  139. Morales, V., Bäckman, A., and Bagdasarian, M., 1991, A series of wide host range low copy number vectors that allow direct screening for recombinants, Gene 97:39–47.PubMedCrossRefGoogle Scholar
  140. Murillo, J., Shen, H., Gerhold, D., Sharma, A., Cooksey, D. A., and Keen, N. T., 1994, Characterization of pPT23B, the plasmid involved in syringolide production by Pseudomonas syringae pv. tomato PT23, Plasmid 31:275–287.PubMedCrossRefGoogle Scholar
  141. Nagahama, K., Ogawa, T., Fujii, T, Tazaki, M., Tanase, S., Morino, Y., and Fukuda, H., 1991, Purification and properties of an ethylene-forming enzyme from Pseudomonas syringae, J. Gen. Microbiol. 137:2281–2286.PubMedCrossRefGoogle Scholar
  142. Nagahama, K., Yoshino, K., Matsuoka, M., Sato, M., Tanase, S., Ogawa, T., and Fukuda, H., 1994, Ethylene production by strains of the plant-pathogenic bacterium Pseudomona syringae depends upon the presence of indigenous plasmids carrying homologous genes for the ethylene-forming enzyme, Microbiology 140:2309–2313.PubMedCrossRefGoogle Scholar
  143. Nakai, C, Kagamiyama, H., Nozaki, M., Nakazawa, T., Inouye, S., Ebina, Y., and Nakazawa, A., 1983, Complete nucleotide sequence of the metapyrocatechase gene on the TOL plasmid of Pseudomonas putida mt-2, J. Biol. Chem. 258:2923–2928.PubMedGoogle Scholar
  144. Nakazawa, T., Inouye, S., and Nakazawa, A., 1980, Physical and functional mapping of RP4-TOL plasmid recombinants: Analysis of insertion and deletion mutants, J. Bacteriol. 144:222–231.PubMedGoogle Scholar
  145. Neito, C, Fernandez-Tresguerres, E., Sanchez, N., Vicente, M., and Diaz, R., 1990, Cloning vectors from a naturally occurring plasmid of Pseudomonas savastanoi, specifically tailored for genetic manipulations in Pseudomonas, Gene 87:145–149.CrossRefGoogle Scholar
  146. Nikaido, H., 1992, Nonspecific and specific permeation channels of the Pseudomonas aeruginosa outer membrane, in: Pseudomonas: Molecular Biology and Biotechnology (E. Galli, S. Silver, and B. Witholt, eds.) American Society for Microbiology, Washington, D. C, pp. 146–153.Google Scholar
  147. Ogawa, T., Takahashi, M., Fujii, T., Tazaki, M., and Fukuda, H., 1990, The role of NADH:Fe(III)EDTA oxidoreductase in ethylene formation from 2-keto-methylthiolbutyrate, J. Ferment. Bioeng. 93:177–181.Google Scholar
  148. Olekhnovich, I.N., and Fomichev, Y. K., 1994, Controlled-expression shuttle vector for pseudomonads based on the trpIBA genes of Pseudomonas putida, Gene 140:63–65.PubMedCrossRefGoogle Scholar
  149. Owen, D. J., 1986, Molecular cloning and characterization of sequences from the regulatory cluster of the Pseudomonas plasmid alk system, Mol. Gen. Genet. 203:64–72.PubMedCrossRefGoogle Scholar
  150. Owen, D. J., Eggink, G., Hauer, B., Kok, M., McBeth, D. L., Yang, Y. L., and Shapiro, J. A., 1984, Physical structure, gentic content, and expression of the alkBAC operon, Mol. Gen. Genet. 197:373–383.PubMedCrossRefGoogle Scholar
  151. Palleroni, N. J., Kunisawa, R., Contopoulou, R., and Doudoroff, M., 1973, Nucleic acid homologies in the genus Pseudomonas, Int. J. Syst. Bacteriol. 23:333–339.CrossRefGoogle Scholar
  152. Palm, C. J., Gaffney, T., and Kosuge, T., 1989, Contranscription of genes encoding indoleacetic acid production in Pseudomonas syringae subsp. savastanoi, J. Bacteriol. 171:1002–1009.PubMedGoogle Scholar
  153. Pavel, H., Forsman, M., and Shingler, V., 1994, An aromatic effector specificity mutant of the transcriptional regulator DmpR overcomes the growth constraints of Pseudomonas sp. strain CF600 on para-substituted methylphenols, J. Bacteriol. 176:7550–7557.PubMedGoogle Scholar
  154. Perez-Martin, J., Timmis, K. N., and de Lorenzo, V., 1994, Coregulation by bent DNA. Functional substitutions of the integration host factor site at sigma 54-dependent promoter Pu of the upper TOL operon by intrinsically curved sequences, J. Biol. Chem. 269:22657–22662.PubMedGoogle Scholar
  155. Peters, S. E., Hobman, J. L., Strike, P., and Ritchie, D. A., 1991, Novel mercury resistance determinants carried by IncJ plasmids pMERPH and R391, Mol. Gen. Genet. 228:294–299.PubMedCrossRefGoogle Scholar
  156. Quinn, J. P., 1992, Intrinsic antibiotic resistance in Pseudomonas aeruginosa, in: Pseudomonas: Molecular Biology and Biotechnology (E. Galli, S. Silver, and B. Witholt, eds.) American Society for Microbiology, Washington, D. C, pp. 154–160.Google Scholar
  157. Rajini Rani, D. B., and Mahadevan, A., 1992, Plasmid mediated metal and antibiotic resistance in marine Pseudomonas, Biometals 5:73–80.PubMedCrossRefGoogle Scholar
  158. Rajini Rani, D. B., and Mahadevan, A., 1994, Cloning and expression of the mercury resistance genes of marin Pseudomonas sp. strain MR1 plasmid pMR1 in Escherichia coli, Res. Microbiol. 145:121–127.CrossRefGoogle Scholar
  159. Ramos, J. L., Stolz, A., Reineke, W., and Timmis, K. N., 1986, Altered effector specificities in regulators of gene expression: TOL plasmid xylS mutants and their use to engineer expansion of the range of aromatics degraded by bacteria, Proc. Natl Acad. Sci. USA 83:8467–8471.PubMedCrossRefGoogle Scholar
  160. Ramos, J. L., Mermod, N., and Timmis, K. N., 1987, Regulatory circuits controlling transcription of TOL plasmid operon encoding meta-cleavage pathway for degradation of alkylbenzoates by Pseudomonas, Mol. Microbiol. 1:293–300.PubMedCrossRefGoogle Scholar
  161. Ramos, J. L., Duque, E., Huertas, M.-J. and Haïdour, A., 1995, Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons, J. Bacteriol. 177:3911–3916.PubMedGoogle Scholar
  162. Reimmann, C., and Haas, D., 1986, IS21 insertion in the trfA replication control gene of chromosomally integrated plasmid RP1: A property of stable Pseudomonas aeruginosa Hfr strains. Mol. Gen. Genet. 203:511–519.PubMedCrossRefGoogle Scholar
  163. Rheinwald, J. G., Chakrabarty, A. M., and Gunsalus, I. C., 1973, A transmissible plasmid contolling camphor oxidation in Pseudomonas putida, Proc. Natl. Acad. Sci. USA 70:885–889.PubMedCrossRefGoogle Scholar
  164. Ronald, S. L., Kropinski, A. M., and Farinha, M. A., 1990, Construction of broad-host-range vectors for the selection of divergent promoters, Gene 90:145–148.PubMedCrossRefGoogle Scholar
  165. Rosenberg, C, Casse-Delbart. F., Dusha, I., David, M., and Boiucher, C., 1982, Megaplasmids in the plant-associated bacteria Rhizobium meliloti and Pseudomonas solanacearum, J. Bacteriol. 150:402–406.PubMedGoogle Scholar
  166. Sanseverino, J., Applegate, B. M., King, J. M., and Sayler, G. S., 1993, Plasmid-mediated mineralization of naphthalene, phenanthrene, and anthracene, Appl. Env. Microbiol. 59:1931–1937.Google Scholar
  167. Schell, M. A., 1986, Homology between nucleotide sequences of promoter regions of nah and sal operons of NAH7 plasmid of Pseudomonas putida, Proc. Natl. Acad. Sci. USA 83:369–373.PubMedCrossRefGoogle Scholar
  168. Schell, M. A., and Sukordhaman, M., 1989, Evidence that the transcription activator encoded by the Pseudomonas putida nahR gene is evolutionary related to the transcription activators encoded by the Rhizobium nodD genes, J. Bacteriol. 171: 1952–1959.PubMedGoogle Scholar
  169. Schell, M. A., Brown, P. H., and Raju, S., 1990, Use of saturation mutagenesis to localize probable functional domains in the NahR protein, a LysR-type transcription activator, J. Biol. Chem. 265:3844–3850.PubMedGoogle Scholar
  170. Scherzinger, E., Haring, V., Lurz, R., and Otto, S., 1991, Plasmid RSF1010 DNA replication in vitro promoted by purified RSF1010 RepA, RepB, and RepC proteins, Nucl. Acids Res. 19:1203–1211.PubMedCrossRefGoogle Scholar
  171. Scholz, P., Haring, V., Wittmann-Liebold, B., Ashman, K., Bagdasarian, M., and Scherzinger, E., 1989, Complete nucleotide sequence and gene organization of the broad-host-range plasmid RSF1010, Gene 75(2):271–288.PubMedCrossRefGoogle Scholar
  172. Shapiro, J. A., Charbit, A., Benson, S., Caruso, M., Laux, R., Meyer, R., and Banuett, F., 1981, Perspectives for genetic engineering of hydrocarbon oxidizing bacteria, in: Trends in the Biology of Fermentations for Fuels and Chemicals (A. Hollaender, ed.), Plenum, New York, pp. 243–272.CrossRefGoogle Scholar
  173. Shapiro, J. A., Owen, D. J., Kok, M., and Eggink, G., 1984, Pseudomonas hydrocarbon oxidation, in: Genetic Control of Environmental Pollutants (G. S. Omenn and A. Hollaender, eds.) Plenum, New York, pp. 229–238.CrossRefGoogle Scholar
  174. Shingler, V., and Thomas, C. M., 1984, Transcription of the trfA region of broad host range plasmid RK2 is regulated by trfB and korB, Mol. Gen. Genet. 195:523–529.CrossRefGoogle Scholar
  175. Sikkema, J., de Bont, J. A. M., and Poolman, B., 1995, Mechanisms of membrane toxicity of hydrocarbons, Microbio. Rev. 59:201–222.Google Scholar
  176. Simon, M. J., Osslund, T. D., Saunders, R., Ensley, B. D., Suggs, S., Harcourt, A., Suen, W.-C, Gibson, D. T., and Zylstra, G. J., 1993, Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strain G7 and NCIB 9816-4, Gene 127:31–37.PubMedCrossRefGoogle Scholar
  177. Smith, M. J., Mazzola, E. P., Sims, J. J., Midland, S. L., Keen, N. T, Burton, V., and Stayton, M. M., 1993, The syringolides: Bacterial C-glycosyl lipids that trigger plant disease resistance, Tetrahedon Lett. 34:223–226.CrossRefGoogle Scholar
  178. Soby, S., Kirkpatrick, B., and Kosuge, T, 1994, Characterization of high-frequency deletions in the iaa-containing plasmid, pIAA2, of Pseudomonas syringae pv. savastanoi, Plasmid 31:21–30.PubMedCrossRefGoogle Scholar
  179. Summers, A. O., and Lewis, E., 1973, Volatilization of mercuric chloride by mercuryresistant plasmid-bearing strains of Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, J. Bacteriol. 113:1070–1072.PubMedGoogle Scholar
  180. Sundin, G. W., and Bender, C. L., 1993, Ecological and genetic analysis of copper and streptomycin resistance in Pseudomonas syringae pv. syringae, Appl. Envioron. Microbiol. 59:1018–1024.Google Scholar
  181. Suzuki, M., Hayakawa, T., Shaw, J. P., Rekik, M., and Harayama, S., 1991, Primary structure of xylene monooxygenase: Similarities to and differences fromthe alkane hydroxylation system, J. Bacteriol. 173:1690–1695.PubMedGoogle Scholar
  182. Tait, R. C, Rempel, H., Rodriguez, R. L., and Kado, C. L, 1985, The aminoglycosideresistance operon of the plasmid pSa: Nucleotide sequence of the streptomycin-spectinomycin resistance gene, Gene 36:97–104.PubMedCrossRefGoogle Scholar
  183. Tait, R. C, Close, T. J., Rodriguez, R. L., and Kado, C. I., 1982, Isolation of the origin of replication of the IncW-group plasmid pSa, Gene 20:39–49.PubMedCrossRefGoogle Scholar
  184. Tan, H. M., and Fong, K. P., 1993, Molecular analysis of the plasmid-borne bed gene cluster from Pseudomonas putida ML2 and cloning of the cis-benzene dihydrodiol dehydrogenase gene, Can. J. Microbiol. 39:357–362.PubMedCrossRefGoogle Scholar
  185. Tan, H. M., Tang, H. Y., Joannou, C. L., Abdel-Wahab, N. H., and Mason, J. R., 1993, The Pseudomonas putida ML2 plasmid-encoded genes for benzene dioxygenase are unusual in codon usage and low in G+C content, Gene 130:33–39.PubMedCrossRefGoogle Scholar
  186. Tan, H. M., Joannou, C. L., Cooper, C. E., Butler, C. S., Cammack, R., and Mason, J. R., 1994, The effect of ferredoxin (BED) overexpression on benzene dioxygenase activity in Pseudomonas putida ML2. J. Bacteriol 176:2507–2512.PubMedGoogle Scholar
  187. Timmis, K. N., 1981, Gene manipulation in vitro, in: Genetics as a Tool in Microbiology (S. W. Glover and D. A. Hopwood, eds.) Cambridge University Press, Cambridge, England, pp. 49–109.Google Scholar
  188. Timmis, K. N., Lehrbach, P. R., Harqayama, S., Don, R. H., Mermod, N., Bas, S., Leppik, R., Weightman, A. J., Reineke, W., and Knackmuss, H.-J., 1985, Analysis and manipulations of plasmid-encoded pathways for the catabolism of aromatic compounds by soil bacteria, in: Plasmids in Bacteria (D. Helinski, S. N. Cohen, D. Clewell, D. Jackson, and A. Hollaender, eds.) Plenum, New York, pp. 719–739.CrossRefGoogle Scholar
  189. Tsuda, M., and Iino, T., 1988, Identification and characterization of Tn4653, a transposon covering the toluene transposon Tn4651 on TOL plasmid pWW0, Mol. Gen. Genet. 213:72–77.PubMedCrossRefGoogle Scholar
  190. Unger, B. P., Gunsalus, I. C, and Sligar, S. G., 1986, Nucleotide sequence of the Pseudomonas putida cytochrome P-450cam gene and its expression in Escherichia coli, J. Biol. Chem. 261:1158–1163.PubMedGoogle Scholar
  191. Valentine, C. R. I., and Kado, C. I., 1989, Molecular genetics of the IncW plasmids, in: Promiscuous Plasmids of Gram-Negative Bacteria (C. M. Thomas, ed.) Academic Press, London, pp. 125–163.Google Scholar
  192. Valentine, C. R., Heinrich, M. J., Chissoe, S. L., and Roe, B. A., 1994, DNA sequence of direct repeats of the sull gene of plasmid pSa, Plasmid 32:222–227.PubMedCrossRefGoogle Scholar
  193. van Beilen, J. B., Eggink, G., Enequist, H., Box, R., and Witholt, B., 1992, DNA sequence determination and functional characterization of the OCT-plasmid-encoded alkJKL genes of Pseudomonas oleovorans, Mol. Microbiol. 6:3121–3136.PubMedCrossRefGoogle Scholar
  194. Watanabe, T, Furuse, C., and Sakaizumi, S., 1968, Transduction of various R-factors by phage P1 in Escherichia coli and by phage P22 in Salmonella typhimurium, J. Bacteriol. 96:1791–1796.PubMedGoogle Scholar
  195. Watanabe, M., Iyobe, M., Inoue, M., and Mitsuhashi, S., 1991, Transferable imipenem resistance in Pseudomonas aeruginosa, Antimicrob. Agents Chemother. 35:147–151.PubMedCrossRefGoogle Scholar
  196. Williams, P. A., and Murray, K., 1974, Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: Evidence for the existence of a TOL plasmid, J. Bacteriol. 120:416–423.PubMedGoogle Scholar
  197. Worsey, M. J., and Williams, P. A., 1975, Metabolism of toluene and xylenes by Pseudomonas putida (arvilla) mt-2: Evidence for a new function of the TOL plasmid, J. Bacteriol. 124:7–13.PubMedGoogle Scholar
  198. Yano, K., and Nishi, T., 1980, pKJ1, a naturally occurring conjugative plasmid coding for toluene degradation and resistance to streptomycin and sulfonamides, J. Bacteriol. 143:552–560.PubMedGoogle Scholar
  199. Yen, K. M., 1991, Construction of cloning cartridges for development of expression vectors in gram-negative bacteria, J. Bacteriol. 173:5328–5335.PubMedGoogle Scholar
  200. Yen, K.-M., and Gunsalus, I. C, 1982, Plasmid gene organization: Naphthalene/salicylate oxidation. Proc. Natl. Acad. Sci. USA 79:874–878.PubMedCrossRefGoogle Scholar
  201. Yen, K.-M., Sullivan, M., and Gunsalus, I. C, 1983, Electron microscope heteroduplex mapping of naphthalene oxidation gene on the NAH7 and SAL1 plasmids, Plasmid 9:105–111.PubMedCrossRefGoogle Scholar
  202. Young, S. A., Park, S. K., Rodgers, C., Mitchell, R. E., and Bender, C. L., 1992, Physical and functional characterization of the gene cluster encoding the polyketide phytotoxin coronatine in Psendomonas syringae pv. glycinea, J. Bacteriol. 174:1837–1843.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Sachiye Inouye
    • 1
  1. 1.Department of BiochemistryYamaguchi University School of MedicineUbe, YamaguchiJapan

Personalised recommendations