Skip to main content

The In Vivo Release of Taurine in the Striatonigral Pathway

  • Chapter
Taurine 3

Abstract

Cortical information is processed in the neostriatum (STR) and then transmitted to the output nuclei of the basal ganglia, the entopeduncular nucleus (EP) and the substantia nigra pars reticulata (SNr). In the mammalian neostriatum the majority of neurones are the medium-size spiny neurons, sending their axons to the globus pallidus (GP) or the EP/SNr, by either the “direct” or the “indirect” pathways26. The “direct” pathway consists of a direct projection from the neostriatum to the EP/SNr, while the “indirect” pathways consist of a striatal projection to the GP and thence to the output nuclei directly or via the subthalamic nucleus (STN). Striatonigral projection neurons, neurons of the GP, SNr and EP are GABAergic, whereas those of the STN use glutamate. Activation of the “direct” pathway thus leads to inhibition in the EP/SNr whereas activation of the “indirect” pathways produces the opposite effect i.e. disinhibition; the imbalance between the two is thought to underlie disorders of movement1,6,12,15.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albin, R.L., Young, A.B., and Penney, J.B., 1989, The functional anatomy of basal ganglia disorders, TINS, 12:366–375.

    PubMed  CAS  Google Scholar 

  2. Bernard, V., Gardiol, A., Faucheux, B., Bloch, B., Agid, Y., and Hirsch, E.C., 1996, Expression of glutamate receptors in the human and rat basal ganglia. Effect of dopaminergic denervation on AMPA receptor gene expression in the striatopallidal complex in Parkinson’s disease and rat with 6-OHDA lesion, J. Comp. Neurol., 368:553–568.

    Article  PubMed  CAS  Google Scholar 

  3. Bianchi, L., Bolam, J.P., Galeffi, F., Frosini, M., Palmi, M., Sgaragli, G.P., and Delia Corte, L., 1996, In vivo release of taurine from rat neostriatum and substantia nigra, in Adv. Exp. Med. Biol. “Taurine 2: Basic and Clinical Aspects”, Huxtable, R.J., Azuma, J., Kuriyama, K., Nakagawa, M., and Baba, A., eds., Plenum Press, New York, Vol. 403, pp 427–433.

    Google Scholar 

  4. Bianchi, L., Sharp, T., Bolam, J.P., and Delia Corte, L., 1994, The effect of kainic acid on the release of GABA in rat neostriatum and substantia nigra, NeuroReport, 5:1233–1236.

    Article  PubMed  CAS  Google Scholar 

  5. Bureau, M.H. and Olsen, R.W., 1991, Taurine acts on a subclass of GABAA receptors in mammalian brain in vitro, Eur. J. Pharmacol., 207:9–16.

    Article  PubMed  CAS  Google Scholar 

  6. Chevalier, G. and Deniau, J.M., 1990, Disinhibition as a basic process in the expression of striatal functions, TINS, 13:277–280.

    PubMed  CAS  Google Scholar 

  7. Choi, D.W., 1987, Ionic dependence of glutamate neurotoxicity, J. Neurosci., 7:369–379.

    PubMed  CAS  Google Scholar 

  8. Choi, D.W., Koh, J., and Peters, S., 1988, Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists, J. Neurosci., 8:185–196.

    PubMed  CAS  Google Scholar 

  9. Clarke, D.J., Smith, A.D., and Bolam, J.P., 1983, Uptake of [3H]taurine into medium-size neurones and into identified stratonigral neurones in the rat neostriatum, Brain Res., 289:342–348.

    Article  PubMed  CAS  Google Scholar 

  10. Delia Corte L., Bianchi L., Federico S., and Michelassi S., 1993, In vivo HPLC estimation of extracellular aspartate, glutamate, taurine and GABA in rat striatum: improved methodology, Eur. J. Neurosci., Suppl., 6:261.

    Google Scholar 

  11. Delia Corte, L., Bolam, J.P., Clarke, D.J., Parry, D.M., and Smith, A.D., 1990, Sites of [3H]taurine uptake in the rat substantia nigra in relation to the release of taurine from the striatonigral pathway, Eur. J. Neurosci., 2:50–61.

    Article  Google Scholar 

  12. De Long, M.R., 1990, Primate models of movement disorders of basal ganglia origin, TINS, 13:281–285.

    Google Scholar 

  13. Deniau, J.M., Kitai S.T., Donoghue J.P., and Grofova, I., 1982, Neuronal interactions in the substantia nigra pars reticulata through axon collaterals of the projection neurons, Exp. Brain Res., 47:105–113.

    Article  PubMed  CAS  Google Scholar 

  14. Frandsen, A., Drejer, J., and Schousboe, A., 1989, Direct evidence that excitotoxicity in cultured neurones is mediated via N-methyl-D-aspartate (NMDA) as well as non-NMDA receptors, J. Neurochem., 53:297–299.

    Article  PubMed  CAS  Google Scholar 

  15. Gerfen, C.R., 1992, The neostriatal mosaic: Multiple levels of compartmental organisation, TINS, 15:133–139.

    PubMed  CAS  Google Scholar 

  16. Häusser, M.A., Yung, W.H., and Lacey, M.G., 1992. Taurine and glycine activate the same Cl- conductance in substantia nigra dopamine neurones, Brain Res., 571:103–108.

    Article  PubMed  Google Scholar 

  17. Lavoie, B. and Parent, A., 1994, Pedunculopontine nucleus in the squirrel monkey: cholinergic and glutamatergic projections to the substantia nigra, J. Comp. Neurol., 344:232–241.

    Article  PubMed  CAS  Google Scholar 

  18. Magnusson, K.R., Koerner, J.F., Larson, A.A., Smullin, D.H., Skilling, S.R., and Beitz, A.J., 1991, NMDA-, kainate-and quisqualate-stimulated release of taurine from electrophysiologically monitored rat hippocampal slices, Brain Res., 549:1–8.

    Article  PubMed  CAS  Google Scholar 

  19. Martin, L.J., Blackstone, CD., Levey, A.J., Huganir, R.L., and Price, D.L., 1993, AMPA glutamate receptor subunits are differentially distributed in rat brain, Neuroscience, 53:327–358.

    Article  PubMed  CAS  Google Scholar 

  20. Menendez, N., Solìs, J.M., Herreras, O., Herranz, A.S., and Martin del Rio, R., 1990, Role of endogenous taurine on the glutamate analogue-induced neurotoxicity in the rat hippocampus in vivo, J. Neurochem., 55:714–717.

    Article  PubMed  CAS  Google Scholar 

  21. Miyata, S., Matsushima, O., and Hatton, G.I., 1997, Taurine in rat posterior pituitary: localization in astrocytes and selective release by hypoosmotic stimulation, J. Comp. Neurol., 381:513–523.

    Article  PubMed  CAS  Google Scholar 

  22. Naito, A. and Kita, H., 1994, The cortico-nigral projection in the rat: an anterograde tracing study with biotinylated dextran amine, Brain Res., 637:317–322.

    Article  PubMed  CAS  Google Scholar 

  23. Rinvik, E. and Ottersen, O.P., 1993, Terminals of subthalamonigral fibres are enriched with gluatamte-like immunoreactivity: an electron microscopic, immunogold analysis in the cat, J. Chem. Neuroanat., 6:19–30.

    Article  PubMed  CAS  Google Scholar 

  24. Rothman, S.M., 1985, The neurotoxicity of excitatory amino acids is produced by passive chloride influx, J. Neurosci., 5:1483–1489.

    PubMed  CAS  Google Scholar 

  25. Pasantes-Morales, H. and Schousboe, A., 1988, Volume regulation in astrocytes: a role for taurine as an osmoeffector, J. Neurosci., 20:505–509.

    CAS  Google Scholar 

  26. Smith, A.D. and Bolam, J.P., 1990, The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones, TINS, 13:259–285.

    PubMed  CAS  Google Scholar 

  27. Smith, A.D. and Bolam, J.P., 1991, Convergence of synaptic inputs from the striatum and the globus pallidus onto identified nigrocollicular cells in the rat: a double anterograde labelling study, Neuroscience, 44:45–73.

    Article  PubMed  CAS  Google Scholar 

  28. Solis, J.M., Herranz, A.S., Herreras, O., Lerma J., and Martin del Rio, R., 1988, Does taurine act as an osmoregulatory substance in the rat brain? Neurosci. Lett., 91:53–58.

    Article  PubMed  CAS  Google Scholar 

  29. Wade, J.V., Olson, J.P., Samson, F.E., Nelson, S.R., and Pazdernik, T.L., 1988, A possible role for taurine in osmoregulation within the brain, J. Neurochem., 51:740–745.

    Article  PubMed  CAS  Google Scholar 

  30. Ye, G.-l., Tse, A.C.O., and Yung, W.-h., 1997, Taurine inhibits rat substantia nigra pars reticulata neurons by activation of GABA-and glycine-linked chloride conductance, Brain Res., 749:175–179.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Colivicchi, M.A. et al. (1998). The In Vivo Release of Taurine in the Striatonigral Pathway. In: Schaffer, S., Lombardini, J.B., Huxtable, R.J. (eds) Taurine 3. Advances in Experimental Medicine and Biology, vol 442. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0117-0_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0117-0_45

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0119-4

  • Online ISBN: 978-1-4899-0117-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics