Taurine 3 pp 363-370 | Cite as

The In Vivo Release of Taurine in the Striatonigral Pathway

  • Maria Alessandra Colivicchi
  • Loria Bianchi
  • John P. Bolam
  • Francesca Galeffi
  • Maria Frosini
  • Mitri Palmi
  • Gianpietro Sgaragli
  • Laura Della Corte
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 442)

Abstract

Cortical information is processed in the neostriatum (STR) and then transmitted to the output nuclei of the basal ganglia, the entopeduncular nucleus (EP) and the substantia nigra pars reticulata (SNr). In the mammalian neostriatum the majority of neurones are the medium-size spiny neurons, sending their axons to the globus pallidus (GP) or the EP/SNr, by either the “direct” or the “indirect” pathways26. The “direct” pathway consists of a direct projection from the neostriatum to the EP/SNr, while the “indirect” pathways consist of a striatal projection to the GP and thence to the output nuclei directly or via the subthalamic nucleus (STN). Striatonigral projection neurons, neurons of the GP, SNr and EP are GABAergic, whereas those of the STN use glutamate. Activation of the “direct” pathway thus leads to inhibition in the EP/SNr whereas activation of the “indirect” pathways produces the opposite effect i.e. disinhibition; the imbalance between the two is thought to underlie disorders of movement1,6,12,15.

Keywords

Excitatory Amino Acid Globus Pallidus Kainic Acid Excitatory Amino Acid Receptor Taurine Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albin, R.L., Young, A.B., and Penney, J.B., 1989, The functional anatomy of basal ganglia disorders, TINS, 12:366–375.PubMedGoogle Scholar
  2. 2.
    Bernard, V., Gardiol, A., Faucheux, B., Bloch, B., Agid, Y., and Hirsch, E.C., 1996, Expression of glutamate receptors in the human and rat basal ganglia. Effect of dopaminergic denervation on AMPA receptor gene expression in the striatopallidal complex in Parkinson’s disease and rat with 6-OHDA lesion, J. Comp. Neurol., 368:553–568.PubMedCrossRefGoogle Scholar
  3. 3.
    Bianchi, L., Bolam, J.P., Galeffi, F., Frosini, M., Palmi, M., Sgaragli, G.P., and Delia Corte, L., 1996, In vivo release of taurine from rat neostriatum and substantia nigra, in Adv. Exp. Med. Biol. “Taurine 2: Basic and Clinical Aspects”, Huxtable, R.J., Azuma, J., Kuriyama, K., Nakagawa, M., and Baba, A., eds., Plenum Press, New York, Vol. 403, pp 427–433.Google Scholar
  4. 4.
    Bianchi, L., Sharp, T., Bolam, J.P., and Delia Corte, L., 1994, The effect of kainic acid on the release of GABA in rat neostriatum and substantia nigra, NeuroReport, 5:1233–1236.PubMedCrossRefGoogle Scholar
  5. 5.
    Bureau, M.H. and Olsen, R.W., 1991, Taurine acts on a subclass of GABAA receptors in mammalian brain in vitro, Eur. J. Pharmacol., 207:9–16.PubMedCrossRefGoogle Scholar
  6. 6.
    Chevalier, G. and Deniau, J.M., 1990, Disinhibition as a basic process in the expression of striatal functions, TINS, 13:277–280.PubMedGoogle Scholar
  7. 7.
    Choi, D.W., 1987, Ionic dependence of glutamate neurotoxicity, J. Neurosci., 7:369–379.PubMedGoogle Scholar
  8. 8.
    Choi, D.W., Koh, J., and Peters, S., 1988, Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists, J. Neurosci., 8:185–196.PubMedGoogle Scholar
  9. 9.
    Clarke, D.J., Smith, A.D., and Bolam, J.P., 1983, Uptake of [3H]taurine into medium-size neurones and into identified stratonigral neurones in the rat neostriatum, Brain Res., 289:342–348.PubMedCrossRefGoogle Scholar
  10. 10.
    Delia Corte L., Bianchi L., Federico S., and Michelassi S., 1993, In vivo HPLC estimation of extracellular aspartate, glutamate, taurine and GABA in rat striatum: improved methodology, Eur. J. Neurosci., Suppl., 6:261.Google Scholar
  11. 11.
    Delia Corte, L., Bolam, J.P., Clarke, D.J., Parry, D.M., and Smith, A.D., 1990, Sites of [3H]taurine uptake in the rat substantia nigra in relation to the release of taurine from the striatonigral pathway, Eur. J. Neurosci., 2:50–61.CrossRefGoogle Scholar
  12. 12.
    De Long, M.R., 1990, Primate models of movement disorders of basal ganglia origin, TINS, 13:281–285.Google Scholar
  13. 13.
    Deniau, J.M., Kitai S.T., Donoghue J.P., and Grofova, I., 1982, Neuronal interactions in the substantia nigra pars reticulata through axon collaterals of the projection neurons, Exp. Brain Res., 47:105–113.PubMedCrossRefGoogle Scholar
  14. 14.
    Frandsen, A., Drejer, J., and Schousboe, A., 1989, Direct evidence that excitotoxicity in cultured neurones is mediated via N-methyl-D-aspartate (NMDA) as well as non-NMDA receptors, J. Neurochem., 53:297–299.PubMedCrossRefGoogle Scholar
  15. 15.
    Gerfen, C.R., 1992, The neostriatal mosaic: Multiple levels of compartmental organisation, TINS, 15:133–139.PubMedGoogle Scholar
  16. 16.
    Häusser, M.A., Yung, W.H., and Lacey, M.G., 1992. Taurine and glycine activate the same Cl- conductance in substantia nigra dopamine neurones, Brain Res., 571:103–108.PubMedCrossRefGoogle Scholar
  17. 17.
    Lavoie, B. and Parent, A., 1994, Pedunculopontine nucleus in the squirrel monkey: cholinergic and glutamatergic projections to the substantia nigra, J. Comp. Neurol., 344:232–241.PubMedCrossRefGoogle Scholar
  18. 18.
    Magnusson, K.R., Koerner, J.F., Larson, A.A., Smullin, D.H., Skilling, S.R., and Beitz, A.J., 1991, NMDA-, kainate-and quisqualate-stimulated release of taurine from electrophysiologically monitored rat hippocampal slices, Brain Res., 549:1–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Martin, L.J., Blackstone, CD., Levey, A.J., Huganir, R.L., and Price, D.L., 1993, AMPA glutamate receptor subunits are differentially distributed in rat brain, Neuroscience, 53:327–358.PubMedCrossRefGoogle Scholar
  20. 20.
    Menendez, N., Solìs, J.M., Herreras, O., Herranz, A.S., and Martin del Rio, R., 1990, Role of endogenous taurine on the glutamate analogue-induced neurotoxicity in the rat hippocampus in vivo, J. Neurochem., 55:714–717.PubMedCrossRefGoogle Scholar
  21. 21.
    Miyata, S., Matsushima, O., and Hatton, G.I., 1997, Taurine in rat posterior pituitary: localization in astrocytes and selective release by hypoosmotic stimulation, J. Comp. Neurol., 381:513–523.PubMedCrossRefGoogle Scholar
  22. 22.
    Naito, A. and Kita, H., 1994, The cortico-nigral projection in the rat: an anterograde tracing study with biotinylated dextran amine, Brain Res., 637:317–322.PubMedCrossRefGoogle Scholar
  23. 23.
    Rinvik, E. and Ottersen, O.P., 1993, Terminals of subthalamonigral fibres are enriched with gluatamte-like immunoreactivity: an electron microscopic, immunogold analysis in the cat, J. Chem. Neuroanat., 6:19–30.PubMedCrossRefGoogle Scholar
  24. 24.
    Rothman, S.M., 1985, The neurotoxicity of excitatory amino acids is produced by passive chloride influx, J. Neurosci., 5:1483–1489.PubMedGoogle Scholar
  25. 25.
    Pasantes-Morales, H. and Schousboe, A., 1988, Volume regulation in astrocytes: a role for taurine as an osmoeffector, J. Neurosci., 20:505–509.Google Scholar
  26. 26.
    Smith, A.D. and Bolam, J.P., 1990, The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones, TINS, 13:259–285.PubMedGoogle Scholar
  27. 27.
    Smith, A.D. and Bolam, J.P., 1991, Convergence of synaptic inputs from the striatum and the globus pallidus onto identified nigrocollicular cells in the rat: a double anterograde labelling study, Neuroscience, 44:45–73.PubMedCrossRefGoogle Scholar
  28. 28.
    Solis, J.M., Herranz, A.S., Herreras, O., Lerma J., and Martin del Rio, R., 1988, Does taurine act as an osmoregulatory substance in the rat brain? Neurosci. Lett., 91:53–58.PubMedCrossRefGoogle Scholar
  29. 29.
    Wade, J.V., Olson, J.P., Samson, F.E., Nelson, S.R., and Pazdernik, T.L., 1988, A possible role for taurine in osmoregulation within the brain, J. Neurochem., 51:740–745.PubMedCrossRefGoogle Scholar
  30. 30.
    Ye, G.-l., Tse, A.C.O., and Yung, W.-h., 1997, Taurine inhibits rat substantia nigra pars reticulata neurons by activation of GABA-and glycine-linked chloride conductance, Brain Res., 749:175–179.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Maria Alessandra Colivicchi
    • 1
  • Loria Bianchi
    • 1
  • John P. Bolam
    • 3
  • Francesca Galeffi
    • 1
  • Maria Frosini
    • 2
  • Mitri Palmi
    • 2
  • Gianpietro Sgaragli
    • 2
  • Laura Della Corte
    • 1
  1. 1.Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”Università degli Studi di FirenzeFirenzeItalia
  2. 2.MRC Anatomical Neuropharmacology UnitOxfordUK
  3. 3.Istituto di Scienze FarmacologicheUniversità degli Studi di SienaSienaItalia

Personalised recommendations