Skip to main content

The Anion-Exchanger AE1 is a Diffusion Pathway for Taurine Transport in Rat Erythrocytes

  • Chapter
Taurine 3

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 442))

Abstract

A putative osmolyte is required to meet two main criteria: to be highly concentrated inside the cell, and to possess a specific pathway across the plasma membrane allowing for its osmotic efflux12. In the case of taurine, an admitted osmolyte in several animal species, high intracellular levels are maintained in most mammalian tissues by the action of well characterized sodium/chloride-dependent carriers14,20,24,25. The nature of the taurine efflux carrier, however, remains to be assessed, although it has been demonstrated in several cell types11,17,22 that it consists of a diffusion pathway with pharmacological properties similar to a chloride channel. An alternative pathway for taurine exit has been proposed based on extensive studies with red blood cells (RBCs). This release occurs through a transport system that is sensitive to compounds that are well-known inhibitors of the RBC’s anion-exchanger (AE1)8. It has been claimed, therefore, that taurine uses this diffusion transport system to exit the erythrocyte9 (but see16). This assumption is supported by the fact that some N-derivative analogs of taurine such as, NBD-taurine, Cl-taurine, NAP-taurine or NIP-taurine, are either substrates and/or competitive inhibitors of this anion-exchanger1. In addition, AE1 transports many different organic compounds, including some amino acids such as glycine15.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cabantchik, Z.I. and Greger, R., 1992, Chemical probes for anion transporters of mammalian cell membranes, Am. J. Physiol. 262:C803–827.

    PubMed  CAS  Google Scholar 

  2. Cabantchik, Z.I., Baishin, M., Breuer, W., and Rothstein, A., 1975, Pyridoxal phosphate. An anionic probe for protein amino groups exposed on the outer and inner surfaces of intact human red blood cells, J. Biol. Chem., 250:5130–5136.

    PubMed  CAS  Google Scholar 

  3. Cousin, J.L. and Motais, R., 1982, Inhibition of anion transport in the red blood cell by anionic amphiphilic compounds. I. Determination of the flufenamate-binding site by proteolytic dissection of the band 3 protein, Biochim. Biophys. Acta., 687:147–155.

    Article  PubMed  CAS  Google Scholar 

  4. Eidelman, O., Yanai, P., Englert, H.C., Lang, H.G., Greger, R., and Cabantchik, Z.I., 1991 Macro-molecular conjugates of transport inhibitors: new tools probing topography of anion transport proteins, Am. J. Physiol., 260:C1094–C1103.

    PubMed  CAS  Google Scholar 

  5. Fugelli, K. and Thoroed, S.M., 1986, Taurine transport associated with cell volume regulation in flounder erythrocytes under unisosmotic conditions, J. Physiol., 374:245–261.

    PubMed  CAS  Google Scholar 

  6. Garcia-Romeu, F., Cossins, A.R., and Motais, R., 1991, Cell volume regulation by trout erythrocytes: Characteristics of the transport systems activated by hypotonic swelling, J.Physiol., 440:547–567.

    PubMed  CAS  Google Scholar 

  7. Glibowicka, M., Winckler, B., Aranibar, N., Schuster, M., Hanssum, H., Rüterjans, H., and Passow H., 1988, Temeperature dependece of anion transport in the human red blood cell, Biochim. Biophys. Acta., 946:345–358.

    Article  PubMed  CAS  Google Scholar 

  8. Goldstein, L., Brill, S.R., and Freund, E.V., 1990, Activation of taurine efflux in hypotonically stressed elasmobranch cells: inhibition by stilbene disulfonates, J. Exp. Zool., 254:114–118.

    Article  CAS  Google Scholar 

  9. Goldstein, L. and Brill, S.R., 1991, Volume-activated taurine efflux from skate erythrocytes: possible band 3 involvement, Am. J. Physiol. 260:R1014–1020.

    PubMed  CAS  Google Scholar 

  10. Greger, R., 1990, Chloride channel blockers, in Methods in Enzymology, Fleischer, B. and Fleischer, S., eds., Academic Press, Orlando, FL., Vol. 191, pp. 793–810.

    Google Scholar 

  11. Hall, J.A., Kirk, J., Potts, J.R., Rae, C., and Kirk, K., 1996, Anion channel blockers inhibit swelling activated anion cation, and nonelectrolyte transport in HeLa cells, Am. J. Physiol., 271:C579–C588.

    PubMed  CAS  Google Scholar 

  12. Hoffmann, E.K. and Simonsen, L.O., 1989, Membrane mechanisms in volume and pH regulation in vertebrate cells, Physiol. Rev., 69:315–382.

    PubMed  CAS  Google Scholar 

  13. Huxtable, R.J., 1989, Taurine in the central nervous system and the mammalian actions of taurine, Prog. Neurobiol, 32:471–533.

    Article  PubMed  CAS  Google Scholar 

  14. Jhiang, S.M., Fithian, L., Smanik, P., McGill, J., Tong, Q., and Mazzaferri, E.L., 1993, Cloning of the human taurine transporter and characterization of taurine uptake in thyroid cells, FEBS Lett., 318:139–144.

    Article  PubMed  CAS  Google Scholar 

  15. King, A.P. and Gunn, R.B., 1991, Glycine transport by human red blood cells and ghosts: evidence for glycine anion and proton cotransport by band 3, Am. J. Physiol., 261:C814–C821.

    PubMed  CAS  Google Scholar 

  16. Kirk, K., Ellory, J.C., and Young, J.D., 1992, Transport of organic substrates via a volume-activated channel, J. Biol. Chem., 267:23475–23478.

    PubMed  CAS  Google Scholar 

  17. Lambert, I.H. and Hoffmann, E.K., 1994, Cell swelling activates separate taurine and chloride channels in Ehrlich mouse ascites tumor cells, J. Membrane Biol., 142:289–298.

    Article  CAS  Google Scholar 

  18. Legrum, B. and Passow, H., 1989, Inhibition of inorganic transport across the human red blood cell membrane by chloride-dependent association of dipyridemole with a stilbene disulfonate binding site on the band 3 protein, Biochim. Biophys. Acta, 979:193–207.

    Article  PubMed  CAS  Google Scholar 

  19. Lerma, J., Herranz, A.S., Herreras, O., Abraira, V., and Martín el Río, R., 1986, “In vivo” determination of extracellular concentration of amino acids in the rat hippocampus. A method based on brain dialysis and computerized analysis, Brain Res., 384:145–155.

    Article  PubMed  CAS  Google Scholar 

  20. Liu, QR., López-Corcuera, B., Nelson, H., Mandiyan, S., and Nelson, N., 1992, Cloning and expression of a cDNA encoding the transporter of taurine and ²-alanine in mouse brain, P. Nat. Acad. Sci., 89:12145–12149.

    Article  CAS  Google Scholar 

  21. Martín del Río, R., Galarreta, M., Menéndez, N., Conejero, C., and Solís J.M., 1996, Taurine is a substrate of the anion-exchanger transport systems, in Taurine 2: Basic and Clinical Aspects, Huxtable, R., Azuma, J., Kuriyama, K., Nakagawa, M., and Baba, A., eds., Plenum Press, New York, pp. 401–407.

    Google Scholar 

  22. Pasantes-Morales, H., Chacón, E., Murray, R.A., and Morán, J., 1994, Properties of osmolyte fluxes activated during regulatory volume decrease in cultured cerebellar granule neurons, J. Neurosci. Res., 37:720–727.

    Article  PubMed  CAS  Google Scholar 

  23. Passow, H., 1986, Molecular aspects of band 3 protein-mediated anion transport across the red blood cell membrane, Rev. Physiol. Bioch., 103:61–203.

    CAS  Google Scholar 

  24. Smith, K.E., Borden, L.A., Wang, H.D., Hartig, P.R., Branchek, T.A., and Weinshank, R.L., 1992, Cloning and expression of a high affinity taurine transporter from rat brain, Mol. Pharmacol., 42:563–569.

    PubMed  CAS  Google Scholar 

  25. Uchida, S., Moo Kwon, H., Yamauchi, A., Preston, A.S., Marumo, F., and Handler, J., 1993, Molecular cloning of the cDNA for an MDCK cell Na+ and Cl--dependent taurine transporter that is regulated by hypertonicity, P. Nat. Acad. Sci., 89:8230–8234.

    Article  Google Scholar 

  26. Wieth, J.O., Andersen, O.S., Brahm, J., Bjerrum, P.J., and Borders, C.L., 1982, Chloride-Bicarbonate exchange in red blood cells: Physiology of transport and chemical modification of binding sites, Philos. T. Roy. Soc. London. B, 299:383–399.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

del Río, R.M., Solís, J.M. (1998). The Anion-Exchanger AE1 is a Diffusion Pathway for Taurine Transport in Rat Erythrocytes. In: Schaffer, S., Lombardini, J.B., Huxtable, R.J. (eds) Taurine 3. Advances in Experimental Medicine and Biology, vol 442. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0117-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0117-0_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0119-4

  • Online ISBN: 978-1-4899-0117-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics