Skip to main content

Taurine Inhibition of Iron-Stimulated Catecholamine Oxidation

  • Chapter
Book cover Taurine 3

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 442))

Abstract

Taurine (2-aminoethane sulfonic acid) is a sulfur containing amino acid that is present in mammalian tissues in millimolar concentrations10. Taurine is involved in a diverse array of biological functions which include: osmoregulation, membrane stabilization, neuromodulation, bile salt conjugation, and calcium modulation10. A role for taurine in cellular antioxidant defense mechanisms has been observed under a number of conditions3,17,21,25. Although taurine appears to have little intrinsic reactivity with oxidizing species1, its high concentration may still allow it to directly scavenge free radicals. Furthermore, taurine may bind reactive quinones involved in redox cycling and indirectly inhibit free radical formation11,22. Taurine could also moderate the effects of free radical damage by blunting the ability of prooxidants to increase intracellular free calcium10. The biosynthesis of taurine generates intermediates (hypotaurine and cysteamine) that also have free radical scavenging properties1,10,25. The synthesis of taurine also utilizes cysteine which is an excitatory amino acid that undergoes autoxidation reactions13. Taurine is present in tissues that contain high concentrations of catecholamines which are known to be cytotoxic and increase oxidative stress8,9,16,20. Taurine content declines in brain and peripheral tissues in aged rodents4. The age-related decline in tissue taurine content could increase the susceptibility of cells to free radical-mediated damage. Catecholamines are known to undergo autoxidation reactions to generate free radicals (H2O2, hydroxyl, superoxide) and cytotoxic quinones8,11,22. The oxidation of catecholamines is catalyzed by metals such as iron13. Iron-stimulated autoxidation of catecholamines is thought to play a role in neurodegenerative diseases26. One study has reported that chronic treatment with l-dopa caused a 13% decline in brain taurine content23. At present, it is unclear whether taurine under in vivo conditions serves as a scavenger for reactive quinones and free radicals derived from catecholamine autoxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aruoma, O.I., Halliwell, B., Hoey, B.M., and Butler, J., 1988, The antioxidant action of taurine, hypotaurine and their metabolic precursors, Biochem. J., 256:251–255.

    PubMed  CAS  Google Scholar 

  2. Carney, J.M., Starke-Reed, P.E., Oliver, C.N., Landum, R.W., Cheng, M.S., Wu, J.F., and Floyd, R.A., 1991, Reversal of age-related increases in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tertbutyl-α-phenylnitrone, Proc. Natl. Acad. Sci., 88:3633–3636.

    Article  PubMed  CAS  Google Scholar 

  3. Cozzi, R., Ricordy, R., Bartolini, Ramadori, L., Perticone, P., and De Salvia, R., 1995, Taurine and ellagic acid: two differently-acting natural antioxidants, Environ. Mol. Mutagen., 26:248–254.

    Article  PubMed  CAS  Google Scholar 

  4. Dawson, R. and Wallace, D.R., 1992, Taurine content in tissues from aged Fischer 344 rats, Age, 15:73–81.

    Article  CAS  Google Scholar 

  5. Dawson, R., Felheim, R. and Phillips, M.I., 1994, Characterization of the synthesis and release of dopamine in LLC-PK1 cells, Renal Physiol. Biochem., 17:85–100.

    PubMed  CAS  Google Scholar 

  6. Dawson, R., Eppler, B., Patterson, T.A., Shih, D., and Liu, S., 1996, The effects of taurine in a rodent model of aging, in Adv. Exp. Med. Biol. “Taurine 2 Basic and Clinical Aspects”, Huxtable, R.J., Azuma, J., Kuriyama, K., Nakagawa, M., and Baba, A., eds., Plenum Press, Vol. 403, pp. 37-50.

    Google Scholar 

  7. Dean, R.T., Gieseg, S., and Davies, R.T., 1993, Reactive species and their accumulation on radical damaged proteins, Trends Biochem. Sci., 18:437–441.

    Article  PubMed  CAS  Google Scholar 

  8. Graham, D.G., Tiffany, S.M., Bell, W.R., and Gutknecht, W.F., 1978, Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro, Mol. Pharmacol., 14:644–653.

    PubMed  CAS  Google Scholar 

  9. Han, S-K., Mytilineou, C., and Cohen, G., 1996, L-DOPA up-regulates glutathione and protects mesencephalic cultures against oxidative stress, J. Neurochem., 66:501–510.

    Article  PubMed  CAS  Google Scholar 

  10. Huxtable, R.J., 1992, Physiological actions of taurine, Physiol. Rev., 72:101–163.

    PubMed  CAS  Google Scholar 

  11. Kalyanaraman, B., Premovic, P.I., and Sealy, R.C., 1987, Semiquinone anion radicals from addition of amino acids, peptides, and proteins to quinones derived from oxidation of catechols and catecholamines, J. Biol. Chem., 262:11080–11087.

    PubMed  CAS  Google Scholar 

  12. Levine, R.L, Garland, D., Oliver, C.N., Amici, A.A., Climent, I., Lenz, A., Ahn, B., Shaltiel, S., and Stadtman, E.R., 1990, Determination of carbonyl content in oxidatively modified proteins, Meth. Enzymol., 186:464–478.

    Article  PubMed  CAS  Google Scholar 

  13. Miller, D.M., Buettner, G.R., and Aust, S.D., 1990, Transition metals as catalysts of “autoxidation” reactions, Free Rad. Biol. Med., 8:95–108.

    Article  PubMed  CAS  Google Scholar 

  14. Monks, T.J. and Lau, S.S., 1992, Toxicology of quinone-thioethers, Crit. Rev. Toxicol., 22:243–270.

    Article  PubMed  CAS  Google Scholar 

  15. Mosmann, T., 1983, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Meth., 65:55–63.

    Article  CAS  Google Scholar 

  16. Pardo, B., Mena, M.A., Casarejos, M.J., Paino, C.L., and De Yebenes, J.G., 1995, Toxic effects of l-dopa on mesencephalic cell cultures: protection with antioxidants, Brain Res., 682:133–143.

    Article  PubMed  CAS  Google Scholar 

  17. Pasantes-Morales, H., Wright, C.E., and Gaull, G.E., 1985, Taurine protection of lymphoblastoid cells from iron-ascorbate induced damage, Biochem. Pharmacol., 34:2205–2207.

    Article  PubMed  CAS  Google Scholar 

  18. Spencer, J.P.E., Jenner, A., Aruoma, O.I., Evans, P.J., Kaur, H., Dexter, D.T., Jenner, P., Lees, A.J., Marsden, D.C., and Halliwell, B., 1994, Intense oxidative DNA damage promoted by l-dopa and its metabolites implications for neurodegenerative disease, FEBS Lett., 353:246–250.

    Article  PubMed  CAS  Google Scholar 

  19. Stadtman, E.R. and Oliver, C.N., 1991, Metal-catalyzed oxidation of proteins, J. Biol. Chem., 266:2005–2008.

    PubMed  CAS  Google Scholar 

  20. Tanaka, M., Sotomatsu, A., Kanai, H., and Hirai, S., 1991, Dopa and dopamine cause cultured neuronal death in the presence of iron, J. Neurol. Sci., 101:198–203.

    Article  PubMed  CAS  Google Scholar 

  21. Trachtman, H., Futterwiet, S., and Bienkowski, R.S., 1993, Taurine prevents glucose-induced lipid peroxidation and increased collagen production in cultured rat mesangial cells, Biochem. Biophys. Res. Comm., 191:759–765.

    Article  PubMed  CAS  Google Scholar 

  22. Tse, D.C.S., McCreery, R.L., and Adams, R., 1976, Potential oxidative pathways of brain catecholamines, J. Med. Chem., 19:37–40.

    Article  PubMed  CAS  Google Scholar 

  23. Tyce, G.M. and Owen, C.A., 1973, The effect of L-3,4-dihydroxyphenylalanine administration on glucose metabolism in brain, J. Neurochem., 20:1563–1573.

    Article  PubMed  CAS  Google Scholar 

  24. Wills, E.D., 1987, Evaluation of lipid peroxidation in lipids and biological membranes, in “Biochemical Toxicology a Practical Approach” Snell, K. and Mullock, B., eds., IRL Press, Oxford, pp. 127–152.

    Google Scholar 

  25. Wright, C.E., Tallan, H.H., Lin, Y.Y., and Gaull, G.E., 1986, Taurine: biological update, Ann. Rev. Biochem., 55:427–453.

    Article  PubMed  CAS  Google Scholar 

  26. Youdim, M.B.H., Ben-Shachar, D., Eshel, G., Finberg, J.P.M., and Riederer, P., 1993, The neurotoxicity of iron and nitric oxide relevance to the etiology of Parkinson’s disease, Adv. Neurol., 60:259–265.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dawson, R. et al. (1998). Taurine Inhibition of Iron-Stimulated Catecholamine Oxidation. In: Schaffer, S., Lombardini, J.B., Huxtable, R.J. (eds) Taurine 3. Advances in Experimental Medicine and Biology, vol 442. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0117-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0117-0_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0119-4

  • Online ISBN: 978-1-4899-0117-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics