In-Situ Composite Processes from PEI/TLCP Blends

  • S. S. Hwang
  • S. M. Hong
  • Y. Seo
  • K. U. Kim

Abstract

Blends of isotropic polymers and liquid crystalline polymers have been studied for their potentials to generate in-situ composites yielding high strength/modulus characteristics1,2. In this composite, the thermotropic liquid crystalline polymer (TLCP) reinforcing agent comes out as a low viscous melt during the compounding process, and crystallizes upon cooling to form needle-like reinforced structures in the final fabrication step. This in-situ composite process is advantageous since melt processability and mechanical properties can be simultaneously improved. Also in in-situ composite, the geometry of reinforcement can be easily controlled, through which mechanical properties are abruptly increased. These are great advantages over conventional composite in which geometry of reinforcement is fixed prior to processing and the aspect ratio of reinforcement is reduced during conventional processing such as extrusion. Whereas in the in-situ composite process, reinforcement is deformable so that the aspect ratio of reinforcement can be increased by the extensional flow field3,4: the aspect ratio of reinforcement as well as reinforcement volume is crucial factor for improving mechanical properties of composites5. Also this process can be applicable to blow molding6 and film processing7, which never be achieved in conventional composite processes.

Keywords

Composite Film Draw Ratio Liquid Crystalline Polymer Machine Direction Ternary Blend 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Kiss, In situ composites: blends of isotropic polymers and thermotropic liquid crystalline polymers, Polym. Eng. Sci. 27: 410 (1987).CrossRefGoogle Scholar
  2. 2.
    S.M. Hong, B.C. Kim, K.U. Kim, and I.J. Chung, Rheology and physical properties of polysulfone in-situ reinforced with a thermotropic liquid-crystalline polyester, Polym. J. 23: 1347 (1991).CrossRefGoogle Scholar
  3. 3.
    Q. Lin, J. Jho, and A.F. Yee, Effect of drawing on the structure and properties of a liquid crystalline polymer and polycarbonate in-situ composite, Polym. Eng. Sci. 33: 789 (1993).CrossRefGoogle Scholar
  4. 4.
    Y. Seo, S.S. Hwang, S.M. Hong, T.S. Park, and K.U. Kim, Effect of die geometry on the structural development of a thermotropic liquid crystalline polymer in a thermoplastic elastomer matrix, Polym. Eng. Sci. 35: 1621 (1995).CrossRefGoogle Scholar
  5. 5.
    J.C. Halpin and J.L. Kardos, The Halpin-Tsai equations: a review, Polym. Eng. Sci. 16: 344 (1976).CrossRefGoogle Scholar
  6. 6.
    K.G. Blizard and D.G. Baird, Blow molding of thermotropic liquid crystalline polymers, Intern. Polym. Proc. 4: 172 (1989).Google Scholar
  7. 7.
    K.G. Blizard, T.S. Wilson, and D.G. Baird, Film blowing of thermotropic liquid crystalline polymers, Intern. Polym. Proc. 5: 1 (1990).Google Scholar
  8. 8.
    S.S. Bafna, J.P. De Souza, T. Sun, and D.G. Baird, Mechanical properties of in-situ composites based on partially miscible blends of glass-filled polyetherimide and liquid crystalline polymers, Polym. Eng. Sci. 33: 808 (1993).CrossRefGoogle Scholar
  9. 9.
    H. Thapar and M.J. Bevis, Processing, property and morphology of an injection moulded liquid crystal thermoplastic polymer, Plastic and Rubber Processing and Applications 12: 39 (1989).Google Scholar
  10. 10.
    K.G. Blizard, C. Federici, O. Federico, and L.L. Chapoy, The morphology of extruded blends containing a thermotropic liquid crystalline polymer, Polym. Eng. Sci. 30: 1442 (1990).CrossRefGoogle Scholar
  11. 11.
    D.J. Williams, Applications for thermotropic liquid crystal polymer blends, Adv. Polym. Tech. 10: 173 (1990).CrossRefGoogle Scholar
  12. 12.
    S.M. Hong, S.S. Hwang, Y. Seo, I.J. Chung, and K.U. Kim, Reactive extrusion of in-situ composite based on PET and LCP blends, Polym. Eng. Sci. 37: 646 (1997).CrossRefGoogle Scholar
  13. 13.
    A. Datta and D.G. Baird, Compatibilization of thermoplastic composites based on blends of polypropylene with two liquid crystalline polymers, Polymer 36: 505 (1995).CrossRefGoogle Scholar
  14. 14.
    T. Kobayashi, M. Sato, N. Takeno, and K. Mukaida, Eur. Polym. J. 29: 1625 (1993).CrossRefGoogle Scholar
  15. 15.
    B.C. Kim, S.S. Hwang, S.M. Hong, and Y. Seo, Processing and physical properties of ternary in situ composites, in: Liquid-Crystalline Polymer Systems Technological Advances, A.I. Isayev, T. Kyu, and S.Z.D. Cheng, ed., ACS Symposium Series 632, Washington, DC (1996).Google Scholar
  16. 16.
    C. Ryu, Y. Seo, S.S. Hwang, S.M. Hong, T.S. Park, and K.U. Kim, Miscibility and mechanical properties of poly(ether imide)/liquid crystalline poly(ester imide) blends, Intern. Polym. Proc. 9: 266 (1994).Google Scholar
  17. 17.
    Y. Seo, S.M. Hong, S.S. Hwang, T.S. Park, and K.U. Kim, Compatibilizing effect of a poly(ester imide) on the properties of the blends of poly(ether imide) and a thermotropic liquid crystalline polymer 2, Polymer 36: 525 (1995).CrossRefGoogle Scholar
  18. 19.
    K.F. Wissbrun, Rheology of rod-like polymers in the liquid crystalline state, J. Rheol. 25: 619 (1981).CrossRefGoogle Scholar
  19. 20.
    A.M. Sukhadia, D. Done, and D.G. Baird, Characterization and processing of blends of polyethylene terephthalate with several liquid crystalline polymers, Polym. Eng. Sci. 30: 519 (1990).CrossRefGoogle Scholar
  20. 21.
    S. Lee, S.M. Hong, Y. Seo, T.S. Park, S.S. Hwang, K.U. Kim, and J.W. Lee, Characterization and processing of blends of poly(ether imide) with thermotropic liquid crystalline polymer, Polym. Eng. Sci. 35: 519 (1994).Google Scholar
  21. 22.
    J. Sarlin and DJ. Tormala, Fiber formation and characterization of a thermotropic LCP, J. Appl. Polym. Sci. 40: 453 (1990).CrossRefGoogle Scholar
  22. 23.
    I. Piirma, Polymeric Surfactant, Mercel Dekker, New York (1992).Google Scholar
  23. 24.
    D. Berry, S. Kenig, and A. Siegman, Structure development during flow of polyblends containing liquid crystalline polymers, Polym. Eng. Sci. 31: 451 (1991).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • S. S. Hwang
    • 1
  • S. M. Hong
    • 1
  • Y. Seo
    • 1
  • K. U. Kim
    • 1
  1. 1.Division of Polymer ResearchKorea Institute of Science and TechnologySeoulKorea

Personalised recommendations