Thermoplastic Polymer Blends Containing Conductive Polyaniline

  • Olli T. Ikkala
  • Pentti Passiniemi
  • Jan-Erik Österholm

Abstract

In polymer science there hardly exists another field that has been so interdisciplinary as the development of conducting polymers from a scientific curiosity to technological applications (for a general background, see1–3). In addition to polymer chemistry, conducting polymers have greatly benefitted from solid state physics to understand conduction mechanisms, colloidal chemistry to understand solubilization, science of polymer blending and processing to achieve co-continuous structures in multicomponent polymer systems, and even biochemical sciences to suggest tailored polymer-solvent or polymer-plasticizer complexes to achieve processibility. All of these aspects will be discussed here in some detail. Because this presentation is included in the Session on Polymer Blends, instead of showing the most recent subtleties of polyaniline, we selected to emphasize general aspects how to achieve polyaniline phase co-continuous when blended with polyolefins. Background on conducting polymers is discussed to illustrate the state-of-art. The selected priorization is subjective and thus we apologize possibly incomplete referencing.

Keywords

Sulphonic Acid Capillary Rheometer Dihydroxy Benzene Camphor Sulphonic Acid Dodecyl Benzene Sulphonic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.J. Heeger In Science and Applications of Conducting Polymers; W.R. Salaneck, C.T. Clark, E.J. Samuelson, eds.; Hilger: Bristol (1990).Google Scholar
  2. 2.
    A.G. MacDiarmid and A.J. Epstein, Mater. Res. Soc. Symp. Proc, 328: 133 (1994).CrossRefGoogle Scholar
  3. 3.
    High Performance Polymers and Composites; J.I. Kroschwitz, ed.; Wiley: New York (1991).Google Scholar
  4. 4.
    A.G. Green and A.E.J. Woodhead, J. Chem. Soc. Trans., 97: 2388 (1910).CrossRefGoogle Scholar
  5. 5.
    M. Doriomedoff, F. Hautiere-Cristofini, R.D. Surville, M. Jozefowicz, L.-T. Yu, and R. Buvet J. Chim. Phys. Physicochim. Biol, 68:1055 (1971).Google Scholar
  6. 6.
    C.K. Chiang, C.R. Fincher, Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gau, and A.G. MacDiarmid Phys. Rev. Lett, 39:1098 (1977).CrossRefGoogle Scholar
  7. 7.
    Handbook of Conducting Polymers; T.A. Skotheim, ed.; Marcel Dekker, Inc.: New York (1986).Google Scholar
  8. 8.
    S. Hotta, S.D.D.V. Rughooputh, and A.J. Heeger Synth. Met., 22:79 (1987).CrossRefGoogle Scholar
  9. 9.
    K. Yoshino, S. Nakajima, and R.-I. Sugimoto Jpn. J. Appl.Phys., 6: L2046 (1987).CrossRefGoogle Scholar
  10. 10.
    J.-E. Österholm, J. Laakso, P. Nyholm, H. Isotalo, H. Stubb, O. Inganäs, and W.R. Salaneck Synth. Met., 28:C435(1989).CrossRefGoogle Scholar
  11. 11.
    E.M. Geniès, A. Boyle, M. Lapkowski, and C. Tsintavis Synth. Met., 36:139 (1990).CrossRefGoogle Scholar
  12. 12.
    J.-C. Chiang and A.G. MacDiarmid, Synth. Met., 13: 193 (1986).CrossRefGoogle Scholar
  13. 13.
    A.G. MacDiarmid and AJ. Epstein, Synth. Met., 65: 103 (1994).CrossRefGoogle Scholar
  14. 14.
    P.-G. de Gennes Scaling concepts in polymer physics; Cornell University Press: Ithaca, (1979).Google Scholar
  15. 15.
    Y. Cao, P. Smith, and A.J. Heeger In Patent WO 92/22911 (1992).Google Scholar
  16. 16.
    Y. Cao, J. Qiu, and P. Smith Synth. Met., 69:187 (1995).CrossRefGoogle Scholar
  17. 17.
    O.T. Ikkala, L.-O. Pietilä, L. Ahjopalo, H. Österholm, and P.J. Passiniemi J. Chem. Phys., 103:9855 (1995).CrossRefGoogle Scholar
  18. 18.
    C.Y. Yang, Y. Cao, P. Smith, and A.J. Heeger Synth. Met., 53:293 (1993).CrossRefGoogle Scholar
  19. 19.
    J.K. Sears and N.W. Touchette In Kirk-Othmer Concise Encyclopedia of Chemical Technology; M. Grayson, D. Eckroth, eds.; John Wiley & Sons: New York (1985).Google Scholar
  20. 20.
    O. Ikkala and P.J. Passiniemi; Vol. U.S. Patent No. 5,520,852 (1996).Google Scholar
  21. 21.
    T. Vikki, L.-O. Pietilä, H. Österholm, L. Ahjopalo, A. Takala, A. Toivo, K. Levon, P. Passiniemi, and O. Ikkala Macromolecules, 29:2945 (1996).CrossRefGoogle Scholar
  22. 22.
    O.T. Ikkala, L.-O. Pietilä, L. Ahjopalo, H. Österholm, and P.J. Passiniemi Makromol. Chem., Macromol. Symp., 114:187 (1997).CrossRefGoogle Scholar
  23. 23.
    J. Rebek, Topics in Curr. Chem., 149: 189 (1988).CrossRefGoogle Scholar
  24. 24.
    N.H. Agnew J. Polym. Sci, Polym. Chem. Ed., 14:2819 (1976).CrossRefGoogle Scholar
  25. 25.
    H. Nishide and E. Tsuchida, Makromol. Chem., 177: 2295 (1976).CrossRefGoogle Scholar
  26. 26.
    W.-Y. Zheng, R.-H. Wang, K. Levon, Z.Y. Rong, T. Taka, and W. Pan Makromol. Chem. Phys., 196:2443 (1995).CrossRefGoogle Scholar
  27. 27.
    P. Ekwall In Advances in Liquid Crystals; G.H. Brown, ed.; Academic Press: New York; Vol. 1 (1975).Google Scholar
  28. 28.
    T.M. Birshtein, O.V. Borisov, Y.B. Zhulina, A.R. Khokhlov, and T.A. Yurasova Polym. Sci. USSR, 29:1293 (1987).CrossRefGoogle Scholar
  29. 29.
    G.H. Fredrickson, Macromolecules, 26: 2825 (1993).CrossRefGoogle Scholar
  30. 30.
    M. Wintermantel, M. Gerle, K. Fischer, M. Schmidt, I. Wataoka, H. Urakawa, K. Kajiwara, and Y. Tsukahara Macromolecules, 29:978 (1996).CrossRefGoogle Scholar
  31. 31.
    G. ten Brinke and O. Ikkala Trends in Polymer Science, in press (1997).Google Scholar
  32. 32.
    M. Saariaho, I. Szleifer, I.Y. Erukhimovich, O. Ikkala, and G. ten Brinke J. Chem. Phys. in press (1996).Google Scholar
  33. 33.
    R.V. Tal’roze and N.A. Platé, Polymer Sci., 36: 1479 (1994).Google Scholar
  34. 34.
    M. Antonietti, J. Conrad, and A. Thünemann Macromolecules, 27:6007 (1994).CrossRefGoogle Scholar
  35. 35.
    M. Antonietti, A. Wenzel, and A. Thuenemann Langmuir, 12:2111 (1996).CrossRefGoogle Scholar
  36. 36.
    J. Ruokolainen, J. Tanner, G. ten Brinke, O. Ikkala, M. Torkkeli, and R. Serimaa Macromolecules, 28:7779 (1995).CrossRefGoogle Scholar
  37. 37.
    J. Ruokolainen, M. Torkkeli, R. Serimaa, E. Komanschek, O. Ikkala, and G. ten Brinke Phys. Rev. E, 54:6646 (1996).CrossRefGoogle Scholar
  38. 38.
    J. Ruokolainen, M. Torkkeli, R. Serimaa, S. Vahvaselkä, M. Saariaho, G. ten Brinke, and O. Ikkala Macromolecules, 29:6621 (1996).CrossRefGoogle Scholar
  39. 39.
    J. Ruokolainen, M. Torkkeli, R. Serimaa, B.E. Komanschek, G. ten Brinke, and O. Ikkala Macromolecules, 30:2002 (1997).CrossRefGoogle Scholar
  40. 40.
    T. Vikki, J. Ruokolainen, O.T. Ikkala, P. Passiniemi, H. Isotalo, M. Torkkeli, and R. Serimaa Macromolecules, in press (1997).Google Scholar
  41. 41.
    J. Tanner, O.T. Ikkala, J. Laakso, and P. Passiniemi In Electrical, Optical and Magnetic properties of Organic Solid Materials III; Materials Research Society: Boston (1996).Google Scholar
  42. 42.
    S. Wu, Polym. Eng. Sci., 27: 335 (1987).CrossRefGoogle Scholar
  43. 43.
    G.M. Jordhamo, J.M. Manson, and L.H. Sperling Polym. Eng. Sci., 26:517 (1986).CrossRefGoogle Scholar
  44. 44.
    J. Lyngaae-Joergensen and L.A. Utracki Makromol. Chem., Macromol. Symp., 48/49: 189 (1991).CrossRefGoogle Scholar
  45. 45.
    P. Passiniemi, J. Laakso, H. Österholm, and M. Pohl Synth. Met., 84:775 (1997).CrossRefGoogle Scholar
  46. 46.
    O.T. Ikkala, J. Laakso, K. Väkiparta, E. Virtanen, H. Ruohonen, H. Järvinen, T. Taka, P. Passiniemi, J.-E. Österholm, Y. Cao, A. Andreatta, P. Smith, and A.J. Heeger Synth. Met., 69:97 (1995).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Olli T. Ikkala
    • 1
  • Pentti Passiniemi
    • 2
  • Jan-Erik Österholm
    • 2
  1. 1.Department of Engineering Physics and MathematicsHelsinki University of TechnologyEspooFinland
  2. 2.Neste Oy, Technology CenterPorvooFinland

Personalised recommendations