Dendrimeric Antenna Supermolecules with Multistep Directed Energy Transfer

  • Stephen F. Swallen
  • Michael R. Shortreed
  • Zhong-You Shi
  • Weihong Tan
  • Zhifu Xu
  • Chelladuri Devadoss
  • Jeffrey S. Moore
  • Raoul Kopelman


Photoinduced energy transfer in large molecular systems is a vital process in many biological systems. The primary step in these reactions, such as photosynthesis, is a multi-step process of energy flow from a highly absorbing antenna molecule or moiety to a reaction center.1–5 In general, however, this process is energetically disordered, and thus the energy transfer is dependent upon mechanisms such as random walk, thermal activation, exciton percolation, or a combination of these effects.6–8 In contrast, a large, well ordered molecule with organized local electronic excitation states may provide an efficient means of directed intramolecular energy transport. In this paper we examine a unique class of recently synthesized dendrimeric molecules which exhibit such desirable properties.9,10 These represent the largest purely hydrocarbon dendrimers which have been synthesized to date.


Extended Series Intramolecular Energy Transfer Dendrimer Molecule Large Molecular System Exciton Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Fox, M. A.; Jones, W. E.; Watkins, D. M. Chem. Eng. News 1993, 38..Google Scholar
  2. (2).
    France, L. L.; Geacintov, N. E.; Breton, J.; Valkunas, L. Biochim. Biophys. Acta 1992, 1101, 105–119.CrossRefGoogle Scholar
  3. (3).
    Knox, R.S. Primary Processes of Photosynthesis; Barber, J., Ed.; Elsevier: Amsterdam, 1977; pp 55.Google Scholar
  4. (4).
    Pope, M.; Swenberg, C. E. Electronic Processes in Organic Crystals; Oxford University Press: Oxford, 1982.Google Scholar
  5. (5).
    Webber, S. E. Chem. Rev. 1990, 90, 1469.CrossRefGoogle Scholar
  6. (6).
    Somsen, O. J. G.; Mourik, F. v.; Grondel, R. v.; Valkunas, L. Biophys. J. 1994, 66, 1.CrossRefGoogle Scholar
  7. (7).
    Francis, A. H.; Kopelman, R. In Laser Spectroscopy of Solids; Yen, W. M., Selzer, P. M., Eds.; Springer-Verlag: Berlin, 1986; pp 241.Google Scholar
  8. (8).
    Kopelman, R. J. Phys. Chem. 1976, 80, 2191–2195.CrossRefGoogle Scholar
  9. (9).
    Xu, Z.; Moore, J. S. Acta Polym. 1994, 45, 83–87.CrossRefGoogle Scholar
  10. (10).
    Xu, X.; Kahr, M.; Walker, K. L.; Wilkins, C. L.; Moore, J. S. J. Am. Chem. Soc. 1994, 776, 4537.CrossRefGoogle Scholar
  11. (11).
    Dvornic, P. R.; Tomalia, D. A. Macromol. Symp. 1994, 88, 123–148.CrossRefGoogle Scholar
  12. (12).
    Fox, M. A. Acc. Chem. Res. 1992, 25, 569–74.CrossRefGoogle Scholar
  13. (13).
    Kopelman, R.; Shortreed, M.; Shi, Z.-Y.; Tan, W.; Bar-Haim, A.; Klafter, J. Phys. Rev. Lett. 1997, 78, 1239–42.CrossRefGoogle Scholar
  14. (14).
    Frcchet, J. M. J. Science 1994, 263, 1710.CrossRefGoogle Scholar
  15. (15).
    Lindsey, J. S. J. Am. Chem. Soc. 1994, 776, 9759.Google Scholar
  16. (16).
    Mandlebrot, B. B. The Fractal Geometry of Nature; Freeman: San Francisco, 1983.Google Scholar
  17. (17).
    Fractals and Disordered Systems; Bunde, A.; Havlin, S., Eds.; Springer-Verlag, Berlin: New York, 1991.Google Scholar
  18. (18).
    Risser, S. M.; Beratan, D. N.; Onuchic, J. N. J. Phys. Chem. 1993, 97, 4523–27.CrossRefGoogle Scholar
  19. (19).
    Gentry, S. T.; Kopelman, R. Phys. Rev. B.: Condensed Matter 1983, 27, 2579–82.CrossRefGoogle Scholar
  20. (20).
    Kopelman, R. In Modern Problems in Condensed Matter Sciences, Agranovich, V. M., Hochstrasser, R. M., Eds.; North-Holland: Amsterdam, 1983; pp 139–184.Google Scholar
  21. (21).
    Fauman, E. B.; Kopelman, R. Comments Mol. Cell Biophys. 1989, 6, 47–61.Google Scholar
  22. (22).
    Valkunas, L.; Geacintov, N. E.; France, L. L. J. Lumin. 1992, 51, 67–78.CrossRefGoogle Scholar
  23. (23).
    Pearlstein, R. M. Photochem. Photobiol. 1982, 35, 835–44.CrossRefGoogle Scholar
  24. (24).
    Pearlstein, R. M. J. Lumin. 1992, 57, 139–47.CrossRefGoogle Scholar
  25. (25).
    Valkunas, L. J. Photochem. Photobiol. B: Biol. 1992, 75, 159–170.CrossRefGoogle Scholar
  26. (26).
    Kopelman, R.; Tan, W. Appl. Spec. Rev. 1994, 29, 39.CrossRefGoogle Scholar
  27. (27).
    Tan, W.; Kopelman, R. In Fluorescence Imaging Spectroscopy and Microscopy; Wang, X. F., Herman, B., Eds.; Wiley: New York, 1996; pp 407–475.Google Scholar
  28. (28).
    Kopelman, R. In Physical and Chemical Mechanisms in Molecular Radiation Biology; Glass, W. A., Varma, M., Eds.; Plenum Press: New York, 1991; pp 475–502.CrossRefGoogle Scholar
  29. (29).
    Bignozzi, C. A.; Argazzi, R.; Schoonover, J. R.; Meyer, G. J.; Scandola, F. Sol. Energy Mater. Sol. Cells 1995, 38, 187–198.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Stephen F. Swallen
    • 1
  • Michael R. Shortreed
    • 1
  • Zhong-You Shi
    • 1
  • Weihong Tan
    • 2
  • Zhifu Xu
    • 3
  • Chelladuri Devadoss
    • 4
  • Jeffrey S. Moore
    • 4
  • Raoul Kopelman
    • 1
  1. 1.Department of ChemistryUniversity of MichiganAnn ArborUSA
  2. 2.Department of ChemistryUniversity of FloridaGainsevilleUSA
  3. 3.PPG IndustriesPittsburghUSA
  4. 4.Department of ChemistryUniversity of IllinoisUrbanaUSA

Personalised recommendations