Nanoscale Synthesis and Processing of Multifunctional Polymers and Composites for Photonics

  • N. Deepak Kumar
  • Manjari Lal
  • Paras N. Prasad


Multifunctional composite materials that simultaneously exhibit more than one property are a new generation of materials which hold considerable promise for numerous applications in the field of electronics and photonics. Nanosize control of molecular architecture and morphology provides a powerful approach to control the electronic and optical properties as well as to impart processability of this new generation of materials. In recent years, the design and processing of nanostructured materials has emerged as a frontier area of research. These materials simultaneously exhibit more than one property and, in many cases, produce new effects by the combined action of more than one property. The electronic and photonic properties of these materials are strongly dependent on their bandgaps. This bandgap dependence has been well documented in the case of inorganic semiconductors, where the nanostructure control to produce quantum dots of different sizes has been used to control the electronic, luminescence and nonlinear optical properties.1,2 Quantum confined structures(quantum dots and quantum wells) of inorganic semiconductors such as CdS is an area that has been active for some time.3,4 In contrast, nanoscale polymerization in restricted geometry to produce quantum confined conjugated polymers and composites is practically unexplored. This paper focuses on nanoscale synthesis and processing to control band gap and to prepare novel composite materials for photonics applications.


Droplet Size Reverse Micelle Composite Glass Reverse Micellar System Sulfonium Salt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Wang and W. Mahler, Optics Communications 61,233(1987).CrossRefGoogle Scholar
  2. 2.
    D. Gallagher, W.E. Heady, J.M. Racz, R.N. Bhargava, Journal of Crystal Growth 138,970(1994).CrossRefGoogle Scholar
  3. 3.
    C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc 115.Google Scholar
  4. 4.
    C.Y. Li, Y.H. Kao, Hayashi, T. Takada, J.D. Mackenzie, K. Kang, S.G. Lee, Peyghmbarian, M. Yamane, G. Zhang and S. Najafi, SPIE Sol Gel Optics 2288, 151(1994).CrossRefGoogle Scholar
  5. 5.
    N. C. Greenham, S.C. Moratti, D.D.C Bradley, R. H. Friend, and A.B. Holmes, Nature 65,628(1993).CrossRefGoogle Scholar
  6. 6.
    D. Braun, D. Moses, A. J. Heeger, Appl. Phys. Lett. 61, 3092 (1999).CrossRefGoogle Scholar
  7. 7.
    B. P. Singh, P. N. Prasad and F. E. Karasz, Polymer 29, 1940 (1988).CrossRefGoogle Scholar
  8. 8.
    N. Tessler, G. J. Denton, and R. H. Friend, Nature 382,695(1996).CrossRefGoogle Scholar
  9. 9.
    D. Moses SPIE 1852, 285(1992).CrossRefGoogle Scholar
  10. 10.
    F. Hide, B. J. Schwartz, M. A. Diazgarcia and A. J. Heeger, Chem. Phys. Lett. 256,424(1996).CrossRefGoogle Scholar
  11. 11.
    C. F. Zhao, G. S. He, J. D. Bhawalkar, C. K. Park and P. N. Prasad, Chem. Mater. 7, 1237(1995).CrossRefGoogle Scholar
  12. 12.
    B. H. Cumpston, K.F. Jensen, Synthetic Metals 73, 195 (1995).CrossRefGoogle Scholar
  13. 13.
    F. E. Karasz, J. D. Capistran, D. R. Gagnon, R. W. Lenz, Mol. Cryst. Liq. Cryst. 118, 327(1985).CrossRefGoogle Scholar
  14. 14.
    G. Drefahl, R. Kuehmstedt, H. Oswald, H. H. Hoerhold, Die Macromol Chemie. 131, 89(1970).CrossRefGoogle Scholar
  15. 15.
    M. Kotlarchyk, J. S. Huang, S. H. Chen, J. Phys. Chem. 89, 4382 (1985).CrossRefGoogle Scholar
  16. 16.
    H. F. Eicke, J. Rehak, Helv. Chim. Acta. 59, 2883 (1976).CrossRefGoogle Scholar
  17. M. Zulauf, H. F. Eicke, J. Phys. Chem. 83, 480 (1979).CrossRefGoogle Scholar
  18. 17.
    D. D.C. Bradley, G. P. Evans, R. H. Friend, Synthetic Metals, 17, 651(1987).CrossRefGoogle Scholar
  19. 18.
    H. E. Katz, S. S. Bent, W.L. Wilson, M. L. Schilling, Solomon B. Ungashe, J. Am. Chem. Soc. 116, 6631(1994).CrossRefGoogle Scholar
  20. 19.
    E. J. A. Pope, M. Asami and J. D. Mackenzie, J. Mater. Res., 4, 1018 (1989).CrossRefGoogle Scholar
  21. 20.
    L. L. Hench and J. L. Nogues, Sol-Gel Optics: Processing and Applications, Ed. by L. C. Klein, Kluwer Academic, Boston, 1993, Chapter 3.Google Scholar
  22. 21.
    L. C. Klein, Sol-Gel Optics: Processing and Applications, Ed. by L. C. Klein Kluwer Academic, Boston, 1993, Chapter 10.Google Scholar
  23. 22.
    Gvishi, R. Ph.D. Thesis, The Hebrew University of Jerusalem, Jrusalem, Israel,(1993).Google Scholar
  24. 23.
    R. Gvishi, G. Ruland and P. N. Prasad, Opt. Comm., In Press, (1996).Google Scholar
  25. 24.
    R. Gvishi, J. Bhalwakar, N. D. Kumar, G. Ruland, U. Narang and P. N. Prasad, Chem. of Mat., 7, 2199 (1995).CrossRefGoogle Scholar
  26. 25.
    M. R. Eftink, Topics in Fluorescence Spectroscopy Vol. 2, Ed. by J. R. Lakowicz, Plenum Press, NewYork, 1991 Ch. 2.Google Scholar
  27. 26.
    G. Ruland, R. Gvishi, and P. N. Prasad, J. Am. Chem. Soc, In Press, (1996).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • N. Deepak Kumar
    • 1
  • Manjari Lal
    • 1
  • Paras N. Prasad
    • 1
  1. 1.Photonics Research Laboratory, Department of ChemistryState University of New York at BuffaloBuffaloUSA

Personalised recommendations