Skip to main content

Abstract

For quite a few years, the area of atomic and molecular scale technology has been the subject of intense speculation.1,2 There has also been considerable interest in the actual synthesis of various more or less complex single-molecule devices, both electrical3 (e.g. switches4 and wires5) and mechanical (e.g., brakes,6 turnstiles,7 levers,8 and even a mousetrap9). However, it is often not very clear how any of these devices would be used in practice when they float about freely in a solution. Some degree of control over their location in space and absolute orientation would appear highly desirable, particularly if several devices are to work together. One possibility is to adsorb them on a surface in an oriented fashion, perhaps singly for work with an STM tip10 or in a periodic array dictated by a surface lattice,11 or attached to the outside of a self-assembled monolayer. Still, the degree of control over their location in space and absolute orientation would remain rather limited. Another possibility is to allow the devices to form a three-dimensionally periodic lattice of a crystal. Usually, they will then be packed in a manner over which one has limited control, if any. Such regular arrays could still be quite useful, e.g., as quantum dots, if one had complete control over the separations, the nature of the material that separates them, and the geometry of the lattice. Much progress in crystal engineering has been made by numerous research groups, and this type of control may be available in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.P. Feynman, Saturday Rev. 43 (1960). R. Feynman in: Miniaturization, H. D. Gilbert, ed, Reinhold, New York (1961).

    Google Scholar 

  2. K.E. Drexler, Nanosystems, Molecular Machinery, Manufacturing and Computation, Wiley Interscience, New York (1992).

    Google Scholar 

  3. M.C. Petty, M.R. Bryce, and D. Bloor, Introduction to Molecular Electronics, Arnold, London (1995).

    Google Scholar 

  4. L.F. Tietze and G. Schulz, Liebig’s Ann. 1921 (1995).

    Google Scholar 

  5. L.A. Bumm, J. J. Arnold, M.T. Cygan, T.D. Dunbar, T.P. Burgin, L. Jones II, D.L. Allara, J.M Tour, and P.S. Weiss, Science 271: 1705 (1996).

    Article  CAS  Google Scholar 

  6. T.R. Kelly, M.C. Bowyer, K.V. Bhaskar, D. Bebbington, A. Garcia, F. Lang, M.H. Kim, and M.P Jette, J. Am. Chem. Soc. 116:3657 (1994).

    Article  CAS  Google Scholar 

  7. T.C. Bedard, and J.S. Moore, J. Am. Chem. Soc. 117: 10662 (1995).

    Article  CAS  Google Scholar 

  8. S. Osawa, E. Osawa, and M. Harada, J. Org. Chem. 61: 257 (1996).

    Article  CAS  Google Scholar 

  9. A. Ikai, Materials Sci. Eng. Cl:59 (1994).

    Google Scholar 

  10. A. Stabel, K. Müllen, and J.P. Rabe, Angew. Chem. Int Ed. Engl. 34: 1609 (1995).

    Article  CAS  Google Scholar 

  11. K. Douglas, in: Biomimetic Materials Chemistry, S. Mann, ed., VCH Publishers, New York (1996), p. 177.

    Google Scholar 

  12. Tinkertoy is a trademark of Playskool, Inc., Pawtucket, RI 02862, and designates a children’s toy construction set consisting of straight wooden sticks and other simple elements insertable into spool-like connectors.

    Google Scholar 

  13. J. Michl, P. Kaszynski, A.C. Friedli, G.S. Murthy, H.-C. Yang, R.E. Robinson, N.D. McMurdie and T. Kim, in: Strain and Its Implications in Organic Chemistry, A. de Meijere and S. Blechert, eds, NATO ASI Series, Vol. 273, Kluwer Academic Publishers, Dordrecht, The Netherlands (1989), p 463.

    Chapter  Google Scholar 

  14. P. Kaszynski, A.C. Friedli, and J. Michl, J. Am. Chem. Soc. 114: 601 (1992).

    Article  CAS  Google Scholar 

  15. U.B. Sleyter and M. Sara, Trends in Biotechnology 15:20 (1997).

    Article  Google Scholar 

  16. P. Kaszynski and J. Michl, J. Am. Chem. Soc. 110:5225 (1988).

    Article  CAS  Google Scholar 

  17. K. Hassenrück, G.S. Murthy, V.M. Lynch, and J. Michl, J. Org. Chem. 55: 1013 (1990).

    Article  Google Scholar 

  18. J. Müller, K. Baše, T.F. Magnera, and J. Michl, J. Am. Chem. Soc. 114: 9721 (1992).

    Article  Google Scholar 

  19. C. Mazal, A.J. Paraskos, and J. Michl, Submitted for publication.

    Google Scholar 

  20. J. Michl, in: Applications of Organometallic Chemistry in the Preparation and Processing of Advanced Materials, J.F. Harrod and R.M. Laine, eds., Kluwer, Dordrecht, The Netherlands (1995).

    Google Scholar 

  21. U. Schöberl, T.F. Magnera, R.M. Harrison, F. Fleischer, J.L. Pflug, P.F.H. Schwab, X. Meng D. Lipiak, B.C. Noll, V.S. Allured, T. Rudalevige, S. Lee, and J. Michl, J. Am. Chem. Soc 119:3907(1997).

    Article  Google Scholar 

  22. R.M. Harrison, T. Brotin, B.C. Noll, and J. Michl, Organometallics, in press.

    Google Scholar 

  23. T.F. Magnera, L.M. Peslherbe, E. Körblova, and J. Michl, J. Organomet. Chem., in press.

    Google Scholar 

  24. H.E. Zimmerman, T.D. Goldman, T.K. Hirzel, and S.P. Schmidt, J. Organ Chem. 45:3933 (1980).

    Article  CAS  Google Scholar 

  25. H.E. Zimmerman, R.K. King, and M.B. Meinhardt, J. Org. Chem. 57:5484 (1992).

    Article  CAS  Google Scholar 

  26. B.A. Leland, A.D. Joran, P.M. Felker, J.J. Hopfield, A.H. Zewail, and P.B. Dervan, J. Phys. Chem. 89:5571 (1985).

    Article  CAS  Google Scholar 

  27. R. Gilardi, M. Maggini, P.E. Eaton, J. Am. Chem. Soc. 110:7232 (1988).

    Article  CAS  Google Scholar 

  28. P.E. Eaton, and J. Tsanaktsidis, J. Am. Chem. Soc. 112:876 (1990).

    Article  CAS  Google Scholar 

  29. K. Hassenrück, J.G. Radziszewski, V. Balaji, G.S. Murthy, A. J. McKinley, D.E. David, V.M. Lynch, H.-D. Hartin, and J. Michl, J. Am Chem. Soc. 112:873 (1990).

    Article  Google Scholar 

  30. X. Yang, W. Jiang, C.B. Knobler, and M.F. Hawthorne, J. Am. Chem. Soc. 114: 9719 (1992).

    Article  CAS  Google Scholar 

  31. R.M. Harrison, T.F. Magnera, J. Vacek, and J. Michl, in: Modular Chemistry, J. Michl, ed., Kluwer, Dordrecht, The Netherlands, in press.

    Google Scholar 

  32. The results have been reported at another conference: T.F. Magnera, J. Pecka, J. Vacek, and J. Michl, Nanostructural Materials: Clusters, Composites, and Thin Films, ACS Symposium Series, M. Moskovits and V Shalaev, eds., American Chemical Society: Washington, D. C., in press.

    Google Scholar 

  33. F. Diederich, Nature 369:199 (1994).

    Article  CAS  Google Scholar 

  34. U.H.F. Bunzand J.E.C. Wiegelmann-Kreiter, Chem. Ber. 129:785, 1311 (1996).

    Article  Google Scholar 

  35. T.W. Ebbesen, in: Modular Chemistry, J. Michl, ed., Kluwer, Dordrecht, the Netherlands, in press.

    Google Scholar 

  36. H. Segawa, F.-P. Wu, N. Nakayama, H. Maruyama, S. Sagisaka, N. Higuchi, M. Fujitsuka, and T. Shimidzu, Synth. Metals 71: 2151 (1995).

    Article  CAS  Google Scholar 

  37. M.A. Markowitz, R. Bielski, and S.L. Regen, J. Am. Chem. Soc. 110: 7545 (1988).

    Article  CAS  Google Scholar 

  38. MA. Markowitz, V. Janout, D.G. Castner, and S.L. Regen, J. Am. Chem. Soc. 111: 8192 (1989).

    Article  CAS  Google Scholar 

  39. M. Conner, V. Janout, and S.L. Regen, J. Am. Chem. Soc. 115: 1178 (1993).

    Article  CAS  Google Scholar 

  40. W. Lee, R.A. Hendel, P. Dedek, V. Janout, and S.L. Regen, J. Am. Chem. Soc. 117: 10599 (1995).

    Article  CAS  Google Scholar 

  41. F. Porteu, S. Palacin, A. Ruaudel-Teixier, and A. Barraud, Makromol. Chem., Macromol. Symp. 46:37(1991).

    Article  CAS  Google Scholar 

  42. S. Palacin, F. Porteu, and A. Ruaudel-Teixier, Thin Films 20: 69 (1995).

    CAS  Google Scholar 

  43. L. Pospisil, M. Heyrovsky, J. Pecka, and J. Michl, submitted for publication.

    Google Scholar 

  44. Spectroscopy of Surfaces, R.J.H. Clark and R.E. Hester, eds., Wiley, New York (1988).

    Google Scholar 

  45. D. Li, C.T. Buscher, and B.I. Swanson, Chem. Mater. 6: 803 (1994).

    Article  CAS  Google Scholar 

  46. C. Bruckner-Lea, J. Janata, J. Conroy, A. Pungor, and K. Caldwell, Langmuir 9: 3612 (1993).

    Article  CAS  Google Scholar 

  47. J.F.T. Conroy, K. Caldwell, C. Bruckner-Lea, and J. Janata, Electrochim. Acta 40: 2927 (1995).

    Article  CAS  Google Scholar 

  48. M. Sara and U.B. Sleyter, J. Membrane Sci. 33:27 (1987).

    Article  CAS  Google Scholar 

  49. J.H. Fendler, Membrane-Mimetic Approach to Advanced Materials, Springer-Verlag, Berlin (1994).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Magnera, T.F., Pecka, J., Michl, J. (1998). Synthesis of a Covalent Square Grid. In: Prasad, P.N., Mark, J.E., Kandil, S.H., Kafafi, Z.H. (eds) Science and Technology of Polymers and Advanced Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0112-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0112-5_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0114-9

  • Online ISBN: 978-1-4899-0112-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics