Synthesis of a Covalent Square Grid

  • Thomas F. Magnera
  • Jaroslav Pecka
  • Josef Michl


For quite a few years, the area of atomic and molecular scale technology has been the subject of intense speculation.1,2 There has also been considerable interest in the actual synthesis of various more or less complex single-molecule devices, both electrical3 (e.g. switches4 and wires5) and mechanical (e.g., brakes,6 turnstiles,7 levers,8 and even a mousetrap9). However, it is often not very clear how any of these devices would be used in practice when they float about freely in a solution. Some degree of control over their location in space and absolute orientation would appear highly desirable, particularly if several devices are to work together. One possibility is to adsorb them on a surface in an oriented fashion, perhaps singly for work with an STM tip10 or in a periodic array dictated by a surface lattice,11 or attached to the outside of a self-assembled monolayer. Still, the degree of control over their location in space and absolute orientation would remain rather limited. Another possibility is to allow the devices to form a three-dimensionally periodic lattice of a crystal. Usually, they will then be packed in a manner over which one has limited control, if any. Such regular arrays could still be quite useful, e.g., as quantum dots, if one had complete control over the separations, the nature of the material that separates them, and the geometry of the lattice. Much progress in crystal engineering has been made by numerous research groups, and this type of control may be available in the future.


Absolute Orientation Mercury Surface Grid Polymer HOPG Surface Designer Solid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.P. Feynman, Saturday Rev. 43 (1960). R. Feynman in: Miniaturization, H. D. Gilbert, ed, Reinhold, New York (1961).Google Scholar
  2. 2.
    K.E. Drexler, Nanosystems, Molecular Machinery, Manufacturing and Computation, Wiley Interscience, New York (1992).Google Scholar
  3. 3.
    M.C. Petty, M.R. Bryce, and D. Bloor, Introduction to Molecular Electronics, Arnold, London (1995).Google Scholar
  4. 4.
    L.F. Tietze and G. Schulz, Liebig’s Ann. 1921 (1995).Google Scholar
  5. 5.
    L.A. Bumm, J. J. Arnold, M.T. Cygan, T.D. Dunbar, T.P. Burgin, L. Jones II, D.L. Allara, J.M Tour, and P.S. Weiss, Science 271: 1705 (1996).CrossRefGoogle Scholar
  6. 6.
    T.R. Kelly, M.C. Bowyer, K.V. Bhaskar, D. Bebbington, A. Garcia, F. Lang, M.H. Kim, and M.P Jette, J. Am. Chem. Soc. 116:3657 (1994).CrossRefGoogle Scholar
  7. 7.
    T.C. Bedard, and J.S. Moore, J. Am. Chem. Soc. 117: 10662 (1995).CrossRefGoogle Scholar
  8. 8.
    S. Osawa, E. Osawa, and M. Harada, J. Org. Chem. 61: 257 (1996).CrossRefGoogle Scholar
  9. 9.
    A. Ikai, Materials Sci. Eng. Cl:59 (1994).Google Scholar
  10. 10.
    A. Stabel, K. Müllen, and J.P. Rabe, Angew. Chem. Int Ed. Engl. 34: 1609 (1995).CrossRefGoogle Scholar
  11. 11.
    K. Douglas, in: Biomimetic Materials Chemistry, S. Mann, ed., VCH Publishers, New York (1996), p. 177.Google Scholar
  12. 12.
    Tinkertoy is a trademark of Playskool, Inc., Pawtucket, RI 02862, and designates a children’s toy construction set consisting of straight wooden sticks and other simple elements insertable into spool-like connectors.Google Scholar
  13. 13.
    J. Michl, P. Kaszynski, A.C. Friedli, G.S. Murthy, H.-C. Yang, R.E. Robinson, N.D. McMurdie and T. Kim, in: Strain and Its Implications in Organic Chemistry, A. de Meijere and S. Blechert, eds, NATO ASI Series, Vol. 273, Kluwer Academic Publishers, Dordrecht, The Netherlands (1989), p 463.CrossRefGoogle Scholar
  14. 14.
    P. Kaszynski, A.C. Friedli, and J. Michl, J. Am. Chem. Soc. 114: 601 (1992).CrossRefGoogle Scholar
  15. 15.
    U.B. Sleyter and M. Sara, Trends in Biotechnology 15:20 (1997).CrossRefGoogle Scholar
  16. 16.
    P. Kaszynski and J. Michl, J. Am. Chem. Soc. 110:5225 (1988).CrossRefGoogle Scholar
  17. 17.
    K. Hassenrück, G.S. Murthy, V.M. Lynch, and J. Michl, J. Org. Chem. 55: 1013 (1990).CrossRefGoogle Scholar
  18. 18.
    J. Müller, K. Baše, T.F. Magnera, and J. Michl, J. Am. Chem. Soc. 114: 9721 (1992).CrossRefGoogle Scholar
  19. 19.
    C. Mazal, A.J. Paraskos, and J. Michl, Submitted for publication.Google Scholar
  20. 20.
    J. Michl, in: Applications of Organometallic Chemistry in the Preparation and Processing of Advanced Materials, J.F. Harrod and R.M. Laine, eds., Kluwer, Dordrecht, The Netherlands (1995).Google Scholar
  21. 21.
    U. Schöberl, T.F. Magnera, R.M. Harrison, F. Fleischer, J.L. Pflug, P.F.H. Schwab, X. Meng D. Lipiak, B.C. Noll, V.S. Allured, T. Rudalevige, S. Lee, and J. Michl, J. Am. Chem. Soc 119:3907(1997).CrossRefGoogle Scholar
  22. 22.
    R.M. Harrison, T. Brotin, B.C. Noll, and J. Michl, Organometallics, in press.Google Scholar
  23. 23.
    T.F. Magnera, L.M. Peslherbe, E. Körblova, and J. Michl, J. Organomet. Chem., in press.Google Scholar
  24. 24.
    H.E. Zimmerman, T.D. Goldman, T.K. Hirzel, and S.P. Schmidt, J. Organ Chem. 45:3933 (1980).CrossRefGoogle Scholar
  25. H.E. Zimmerman, R.K. King, and M.B. Meinhardt, J. Org. Chem. 57:5484 (1992).CrossRefGoogle Scholar
  26. B.A. Leland, A.D. Joran, P.M. Felker, J.J. Hopfield, A.H. Zewail, and P.B. Dervan, J. Phys. Chem. 89:5571 (1985).CrossRefGoogle Scholar
  27. R. Gilardi, M. Maggini, P.E. Eaton, J. Am. Chem. Soc. 110:7232 (1988).CrossRefGoogle Scholar
  28. P.E. Eaton, and J. Tsanaktsidis, J. Am. Chem. Soc. 112:876 (1990).CrossRefGoogle Scholar
  29. K. Hassenrück, J.G. Radziszewski, V. Balaji, G.S. Murthy, A. J. McKinley, D.E. David, V.M. Lynch, H.-D. Hartin, and J. Michl, J. Am Chem. Soc. 112:873 (1990).CrossRefGoogle Scholar
  30. X. Yang, W. Jiang, C.B. Knobler, and M.F. Hawthorne, J. Am. Chem. Soc. 114: 9719 (1992).CrossRefGoogle Scholar
  31. 25.
    R.M. Harrison, T.F. Magnera, J. Vacek, and J. Michl, in: Modular Chemistry, J. Michl, ed., Kluwer, Dordrecht, The Netherlands, in press.Google Scholar
  32. 26.
    The results have been reported at another conference: T.F. Magnera, J. Pecka, J. Vacek, and J. Michl, Nanostructural Materials: Clusters, Composites, and Thin Films, ACS Symposium Series, M. Moskovits and V Shalaev, eds., American Chemical Society: Washington, D. C., in press.Google Scholar
  33. 27.
    F. Diederich, Nature 369:199 (1994).CrossRefGoogle Scholar
  34. 28.
    U.H.F. Bunzand J.E.C. Wiegelmann-Kreiter, Chem. Ber. 129:785, 1311 (1996).CrossRefGoogle Scholar
  35. 29.
    T.W. Ebbesen, in: Modular Chemistry, J. Michl, ed., Kluwer, Dordrecht, the Netherlands, in press.Google Scholar
  36. 30.
    H. Segawa, F.-P. Wu, N. Nakayama, H. Maruyama, S. Sagisaka, N. Higuchi, M. Fujitsuka, and T. Shimidzu, Synth. Metals 71: 2151 (1995).CrossRefGoogle Scholar
  37. 31.
    M.A. Markowitz, R. Bielski, and S.L. Regen, J. Am. Chem. Soc. 110: 7545 (1988).CrossRefGoogle Scholar
  38. 32.
    MA. Markowitz, V. Janout, D.G. Castner, and S.L. Regen, J. Am. Chem. Soc. 111: 8192 (1989).CrossRefGoogle Scholar
  39. 33.
    M. Conner, V. Janout, and S.L. Regen, J. Am. Chem. Soc. 115: 1178 (1993).CrossRefGoogle Scholar
  40. 34.
    W. Lee, R.A. Hendel, P. Dedek, V. Janout, and S.L. Regen, J. Am. Chem. Soc. 117: 10599 (1995).CrossRefGoogle Scholar
  41. 35.
    F. Porteu, S. Palacin, A. Ruaudel-Teixier, and A. Barraud, Makromol. Chem., Macromol. Symp. 46:37(1991).CrossRefGoogle Scholar
  42. 36.
    S. Palacin, F. Porteu, and A. Ruaudel-Teixier, Thin Films 20: 69 (1995).Google Scholar
  43. 37.
    L. Pospisil, M. Heyrovsky, J. Pecka, and J. Michl, submitted for publication.Google Scholar
  44. 38.
    Spectroscopy of Surfaces, R.J.H. Clark and R.E. Hester, eds., Wiley, New York (1988).Google Scholar
  45. 39.
    D. Li, C.T. Buscher, and B.I. Swanson, Chem. Mater. 6: 803 (1994).CrossRefGoogle Scholar
  46. 40.
    C. Bruckner-Lea, J. Janata, J. Conroy, A. Pungor, and K. Caldwell, Langmuir 9: 3612 (1993).CrossRefGoogle Scholar
  47. 41.
    J.F.T. Conroy, K. Caldwell, C. Bruckner-Lea, and J. Janata, Electrochim. Acta 40: 2927 (1995).CrossRefGoogle Scholar
  48. 42.
    M. Sara and U.B. Sleyter, J. Membrane Sci. 33:27 (1987).CrossRefGoogle Scholar
  49. 43.
    J.H. Fendler, Membrane-Mimetic Approach to Advanced Materials, Springer-Verlag, Berlin (1994).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Thomas F. Magnera
    • 1
  • Jaroslav Pecka
    • 1
  • Josef Michl
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of ColoradoBoulderUSA

Personalised recommendations