Recent Progress in Nonlinear Photonic Devices and Phenomena Based on Organic Materials

  • George I. Stegeman
  • Akira Otomo
  • Matthias Jaeger
  • Christian Bosshard
  • Rien Flipse
  • Michael Canva


There has been a great deal of activity in the last few years in the application of nonlinear organic materials to optical phenomena (excluding electro-optics). The goal of this paper is to focus on recent progress.


Second Harmonic Generation Harmonic Generation Planar Waveguide Dark Soliton Channel Waveguide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Zyss and D.S. Chemla, “Quadratic Nonlinear optics and Optimization of the Second-Order Nonlinear Optical Response of Molecular Crystals”, in Nonlinear and Optical Properties of Organic Molecules and Crystals, Vol 1, pp23–192 eds. D.S. Chemla and J. Zyss, (Academic Press, Orlando, 1987).CrossRefGoogle Scholar
  2. 2.
    articles in Polymers for Lightwave Technology and Integrated Optics, edited by L.A. Hornak (Marcel Dekker, N.Y., 1992).Google Scholar
  3. 3.
    G. Wegner, Z. Naturforsch, 24B:824 (1969).Google Scholar
  4. 4.
    C. Sauteret, J.P. Hermann, R. Frey, F. Pradere, J. Ducuing, R.H. Baughman and R.R. Chance, Phys. Rev. Lett., 36:956 (1976). 5.Google Scholar
  5. G.I. Stegeman, in Frontiers of Polymer Research, pp63–70 edited by P.N. Prasad and J.K. Nigam, (Plenum Press, New York, 1991)CrossRefGoogle Scholar
  6. 6.
    D. Pugh and J.O. Morley, in Nonlinear Optical Properties of Organic Molecules and Crystals Vol 1, pp193–226 D.S. Chemla and J. Zyss eds. (Academic Press, Orlando, 1987).CrossRefGoogle Scholar
  7. 7.
    Ch. Bosshard, G. Knopfle, Ph. Pretre, S. Follonier, C. Serbutoviez and P. Gunter, “Molecular Crystals and Polymers for Nonlinear Optics”, Opt. Engin., 34:1951–60 (1995).CrossRefGoogle Scholar
  8. 8.
    G. Knopfle, R. Schlesser, R. Ducret and P. Gunter, “Optical and Nonlinear Optical Properties of 4′-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST) crystals”, Nonlin. Opt., 9:143–9(1995).Google Scholar
  9. 9.
    W.H. Steier, Y. Shi, L. Yu, M. Chen and L.R. Dalton, Proceedings of SPIE Symposium on the Nonlinear Optical Properties of Organic Materials V, SPIE 1775:379–390 (San Diego, 1992).CrossRefGoogle Scholar
  10. 10.
    C.Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe and M. Kawahara, Appl. Phys. Lett., 63:1170 (1994).CrossRefGoogle Scholar
  11. K. Gallo, G. Assanto and G.I. Stegeman, “Efficient Wavelength Shifting Over the Erbium Amplifier Bandwidth Via Cascaded Second Order Processes in Lithium Niobate Waveguides”, Appl Phys. Lett., submitted.Google Scholar
  12. 11.
    G.I. Stegeman, D.J. Hagan and L. Torner, J. Optical and Quant. Electron., 28:1691 (1996).CrossRefGoogle Scholar
  13. 12.
    M.M. Fejer, G.A. Magel, D.H. Jundt, and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation”, IEEE, J. Quant. Electron., 28:2631–54, (1992).CrossRefGoogle Scholar
  14. 13.
    T. Suhara and H. Nishihara, IEEE J. Quant. Electron, 26:1265–84, (1990).CrossRefGoogle Scholar
  15. 14.
    G. Khanarian, R.A. Norwood, D. Haas, B. Feuer and D. Karim, Appl. Phys. Lett., 57:977–9 (1990).CrossRefGoogle Scholar
  16. 15.
    Khanarian, G., Norwood, R.A., Haas, D., Feuer, B., and Karim, D. “Phase-matched secondharmonic generation in a polymer waveguide. Applied Physics Letters, 57: 977–979, (1990).CrossRefGoogle Scholar
  17. 16.
    Rikken, G.L.J.A., Seppen, C.J.E., Nijhuis, S., and Staring, E. (1990). “Poled Polymers for frequency doubling of diode lasers” Proceedings of the SPIE, 1337: 35–43.CrossRefGoogle Scholar
  18. 17.
    Y. Azumai, M. Kishimoto, H. Sato, ‘Efficient second-harmonic generation with a slab waveguide composed of periodically poled organic copolymer’, Jpn. J. Appl. Phys., 31: 1358–1364,1992.CrossRefGoogle Scholar
  19. 18.
    G.L.J.A. Rikken, C.J.E. Seppen, S. Nijhuis and E.W. Meijer, Appl. Phys. Lett., 58:435–7 (1991).CrossRefGoogle Scholar
  20. 19.
    M. Jäger, G. I. Stegeman, W. Brinker, S. Yilmaz, S. Bauer, W. H. G. Horsthuis, and G. R. Möhlmann, „Comparison of quasi-phase-matching geometries for second harmonic generation in poled polymer channel waveguides at 1.5¼m”, Appl Phys. Lett. 68:1183–1185(1996).CrossRefGoogle Scholar
  21. 20.
    R.A. Norwood and G. Khanarian,:‘Quasi-phase-matched frequency doubling over 5 mm in periodically poled polymer waveguide’, Electron. Lett., 26:2105–2106, (1990).CrossRefGoogle Scholar
  22. 21.
    Azumai, Y., Kishimoto, M., Seo, I., and Sato, H. (1994). “Enhanced SHG power using periodic poling of vinylidene cyanide / vinyl acetate copolymer” IEEE Journal of Quantum Electronics, 30: 1924–1933.CrossRefGoogle Scholar
  23. 22.
    S. Tomaru, T. Watanabe, M. Hikata, M. Amano, Y. Shuto, I. Yokohama, T. Kaino, M. Asobe,: ‘Quasi-phase-matched second harmonic generation in a polymer waveguide with a periodic poled structure’, Appl Phys. Lett., 68:1760–1762, (1996).CrossRefGoogle Scholar
  24. 23.
    Y. Shuto, T. Watanabe, S. Tomura, I. Yokohama, M. Hikita and M. Amano, “Quasi-Phase-Matched Second Harmonic Generation in Diazo-Dye-Substituted Polymer Channel Waveguides”, IEEEJ. Quant, electron., 33:349–357 (1997).CrossRefGoogle Scholar
  25. 24.
    G. Khanarian, M.A. Mortazavi and A.J. East, Appl Phys. Lett., 63:1462 (1993).CrossRefGoogle Scholar
  26. 25.
    Suhara, T., Morimoto, T., and Nishihara, H. “Optical second-harmonic generation by quasi-phase-matching in channel waveguide structure using organic molecular crystal” IEEE Photonics Technology Letters, 5: 934–937(1993).CrossRefGoogle Scholar
  27. 26.
    Marowsky, G., Canto-Said, E.J., Lehmann, S., Sieverdes, F., and Bratz, A. “Phase-matched second-harmonic generation in planar waveguides” Physical Review B, 48: 18114–18118(1993).CrossRefGoogle Scholar
  28. 27.
    O. Sugihara, T. Kinoshita, M. Okaba, S. Kunioka, Y. Nonaka, K. Sasaki, ‘Phase-matched second harmonic generation in poled dye/polymer waveguide’, Appl Optics, 30: 2957–2960, 1991.CrossRefGoogle Scholar
  29. 28.
    Azumai, Y., Seo, I., and Sato, H. “Enhanced SHG Power in Slab-Waveguide Composed of VDCN/VAc Copolymer Film at 1.06 urn and 2.94 μm Lines” Nonlinear Optics, 1: 129–140. (1991b).Google Scholar
  30. 30.
    Rikken, G.L.J.A. “Wavelength-uncritical second-harmonic generation in multilayer waveguides” Optics Letters, 18: 1916–1918 (1993a).CrossRefGoogle Scholar
  31. 31.
    T.L. Penner, N.J. Armstrong, C.S. Willand, J.S. Schildkraut and D.R. Robello, Proceedings of SPIE Symposium on Nonlinear Optical Properties of Organic Materials IV, 1560:377–86(1991).CrossRefGoogle Scholar
  32. 32.
    T.L. Penner, H.R. Motschmann, N.J. Armstrong, M.C. Ezenyilimba, and D.J. Williams, „Efficient phase-matched second-harmonic generation of blue light in an organic waveguide“, Nature 367:49–51 (1994).CrossRefGoogle Scholar
  33. 33.
    H. Ito and H. Inaba, „Efficient phase-matched second-harmonic generation method in four-layered optical-waveguide structure“ Opt. Lett. 2:139–141 (1978).CrossRefGoogle Scholar
  34. 34.
    M. Flörsheimer, M. Küpfer, Ch. Bosshard, H. Looser and P. Günter, „Phase-matched optical second-harmonic generation in Langmuir-Blodgett film waveguides by mode conversion“, Adv. Mater. Commun. 4:795–798 (1992).CrossRefGoogle Scholar
  35. 35.
    M. Kupfer, M. Florsheimer, Ch. Bosshard and P. Gunter: ‘Phase-matched second harmonic generation in χ(2)-inverted Langmuir-Blodgett waveguide structures’, Electron. Lett., 29:2033–2034,(1993).CrossRefGoogle Scholar
  36. 36.
    K. Clays, J. S. Schildkraut, and D. J. Williams, „Phase-matched second-harmonic generation in a four-layered polymeric waveguide“, J. Opt. Soc. Am. B 11:655–664 (1994).CrossRefGoogle Scholar
  37. 37.
    M. Jaeger, G.I. Stegeman, G.R. Mohlmann, M.C. Flipse and M.J.B. Diemeer,“Second Harmonic Generation in Polymer Channel Waveguides Using Modal Dispersion”, Electr. Lett., 32:2009–2010 (1996).CrossRefGoogle Scholar
  38. 38.
    M. Jaeger, G.I. Stegeman, M. Diemeer, C. Flipse and G. Mohlmann, “Modal Dispersion Phase-Matching over 7 mm Length in Overdamped Polymeric Channel Waveguides”, Appl Phys. Lett., 69:4139–41 (1997).CrossRefGoogle Scholar
  39. 39.
    W. Wirges, S. Yilmaz, W. Brinker, S. Bauer-Gogonea, S. Bauer, M. Jager, G.I. Stegeman, M. Ahlheim, M. Stahelin, B. Zysset, F. Lehr, M. Diemeer and R. Felipse, “Polymer Waveguide for Modal Dispersion Phase Matched Second-Harmonic Generation”, Appl Phys. Lett., submitted.Google Scholar
  40. 40.
    M. Jaeger, G.I. Stegeman, S. Yilmaz, W. Wirges, W. Brinker, S. Bauer-Gogonea, S. Bauer, M. Ahlheim, M. Stahelin, F. Lehr, M. Diemeer and M.C. Flipse, “Poling and Characterization of Polymer Waveguides for Modal Dispersion, Phase-Matched Second-Harmonic Generation”, J. Opt. Soc. Am., B (special issue), submitted.Google Scholar
  41. 41.
    M.A. Arbore and M.M. Fejer, Opt. Lett., 22:151 (1997).CrossRefGoogle Scholar
  42. 42.
    T. C. Kowalczyk, K. D. Singer, and P. A. Cahill „Anomalous-dispersion phase-matched second-harmonic generation in a polymer waveguide“, Opt. Lett. 20:2273–2275 (1995).CrossRefGoogle Scholar
  43. 43.
    A. Harada, Y. Okazaki, K. Kamiyama and S. Umegaki, Appl. Phys. Lett., 59:1535–7 (1991).CrossRefGoogle Scholar
  44. 44.
    T. Uemiya, N. Uenishi, S. Okamoto, K. Chikuma, K. Kumata, T. Kondo, R. Ito and S. Umegaki, Appl. Optics, 31:7581–6 (1992).CrossRefGoogle Scholar
  45. 45.
    P. Kerkoc, Ch. Bosshard, H. Arend, P. Günter, Appl. Phys. Lett. 54:487 (1989).CrossRefGoogle Scholar
  46. 46.
    Huang, G.-F., Hwang, M.-Y., Chong, S.W., and Lin, J.T. “Characteristics on nonlinear organic crystal o 4-(N, N-dimethylamino)-3-acetamidonitrobenzene” Optics Communications, 82: 539–543(1991).CrossRefGoogle Scholar
  47. 47.
    Kondo, T., Morita, R., S., Ogasawara, N., Umegaki, S., and Ito, R. “A nonlinear optical organic crystal for waveguiding SHG devices: (−)2-(α-methylbenzylamino)-5-nitropyridine (MB ANP)” Japanese Journal of Applied Physics, 28:1622–1628 (1989).CrossRefGoogle Scholar
  48. 48.
    Ch. Bosshard, M. Flörsheimer, M. Küpfer and P. Günter, Opt. Commun.,” Cerenkov-type phase-matched second-harmonic generation in DCANP Langmuir-Blodgett film waveguides”, 85:247–53 (1991).Google Scholar
  49. 49.
    K. Clays, N. J. Armstrong, and T. L. Penner, “Blue and green Cerenkov-type second-harmonic generation in a polymeric Langmuir-Blodgett waveguide” J. Opt. Soc. Am. B 10:886–893 (1993).CrossRefGoogle Scholar
  50. 50.
    Asai, N., Tamada, H., Fujiwara, I., and Seto, J. “An optical waveguide with a nonlinear optical susceptibility inversion structure in the thickness direction” Journal of Applied Physics, 72: 4521–4528(1992).CrossRefGoogle Scholar
  51. 51.
    Sugihara, O., Kunioka, S., Nonaka, Y., Aizawa, R., Koike, Y., Kinoshita, T., and Sasaki, K. “Second-harmonic generation by Cerenkov-type phase matching in a poled polymer waveguide” Journal of Applied Physics, 70: 7249–7252 (1991b).CrossRefGoogle Scholar
  52. 52.
    Azumai, Y. and Sato, H. “Improvement of the Cerenkov radiative second-harmonic generation in the slab waveguide with a periodic nonlinear optical susceptibility” Japanese Journal of Applied Physics, 32: 800–806(1993).CrossRefGoogle Scholar
  53. 53.
    Sato, H., Azumai, Y., and Nozawa, H. “Effect of chirped nonlinear optical susceptibility corrugation on the Cerenkovian second-harmonic power in a slab waveguide” Optics Letters, 19: 93–95(1994).CrossRefGoogle Scholar
  54. 54.
    Noordman, O.F.J., van Hülst, N.F., and Böiger, B. “Cerenkov-type second-harmonic generation in thin planar calix4]arene waveguiding films” Journal of the Optical Society of America B, 12: 2398–2405(1995).CrossRefGoogle Scholar
  55. 55.
    H. Sato and Y. Azumai, J Opt. Soc. Am. B, 10:894–897 (1993).CrossRefGoogle Scholar
  56. 56.
    Chen, Y., Kamath, M., Jain, A., Kumar, J., and Tripathy, S. “Cerenkov type phase-matched second harmonic generation in polymeric channel waveguides” Optics Communications, 101: 231–234(1993).CrossRefGoogle Scholar
  57. 57.
    Cazeca, M., Jiang, X.L., Masse, C.E., Kamath, M., Jeng, R.J., Kumar, J., and Tripathy, S.K. “Stable highly transparent nonlinear optical polymer for laser frequency doubling” Optics Communications, 117: 127–132(1995).CrossRefGoogle Scholar
  58. 58.
    R. Normandin and G.I. Stegeman, Opt. Lett., 4:58–60 (1979).CrossRefGoogle Scholar
  59. 59.
    R. Normandin, R.L. Williams and F. Chatenoud, Electron. Lett., 26:906–7 (1990).CrossRefGoogle Scholar
  60. 60.
    S. Janz, E. Frlan, H. Dai, F. Chatenoud and R. Normandin, Opt. Lett., 17:1718–20 (1992).CrossRefGoogle Scholar
  61. 61.
    A. Otomo, S. Mittler-Neher, C. Bosshard, G.I. Stegeman, W.H.G. Horsthuis and G.R. Mohlmann, “Second harmonic generation by counter propagating beams in DANS side chain polymer channel waveguides”, Appl Phys. Lett., 63:3405–7, (1993).CrossRefGoogle Scholar
  62. 62.
    A. Otomo, G.I. Stegeman, W.H.G. Horsthuis and G.R. Mohlmann, “Quasi-phase-matched Surface Emitting Second Harmonic Generation in Poled Polymer Waveguides”, Appl. Phys. Lett., 68: 3683–5(1996).CrossRefGoogle Scholar
  63. 63.
    A. Otomo, G.I. Stegeman, M.C. Flipse, M.B.J. Diemeer, W.G.H. Horsthuis and G.R. Mohlmann, “Nonlinear Contrawave Mixing Devices in Poled Polymer Waveguides”, J. Opt. Soc. Am., B (special issue), submitted.Google Scholar
  64. 64.
    Ch. Bosshard, A. Otomo, G.I. Stegeman, M. Kupfer, M. Florsheimer and P. Gunter, “Surface emitted green light generated in Langmuir-Blodgett film waveguides”, Appl Phys. Lett., 64:2076–8(1994).CrossRefGoogle Scholar
  65. 65.
    M.A. Mortazavi, D.R. Yankelevich, A. Dienes, A. Knoesen, S.T. Kowel and S. Dijaili, Appl. Opt., 28:3278–80 (1989).CrossRefGoogle Scholar
  66. 66.
    D.R. Yankelevich, A. Dienes, A. Knoesen, R.W. Schoenlein and C.V. Shank, IEEE J. Quant. Electron., 28:2398–2403 (1992).CrossRefGoogle Scholar
  67. 67.
    D. Josse, S.X. Dou, J. Zyss, P. Andreazza and A. Perigaud, “Near-infrared optical parametric oscillation in a N-(4-nitrophenyl)-L-prolinol molecular crystal”, Appl Phys. Lett., 61:121–3 (1992).CrossRefGoogle Scholar
  68. 68.
    G.I. Stegeman, “Material figures of merit and implications to all-optical switching”, SPIE Proceedings on Nonlinear Optical Properties of Advanced Materials, 1852:75–89 (1993).CrossRefGoogle Scholar
  69. 69.
    B. Lawrence, W. Torruellas, M. Cha, G.I. Stegeman, J. Meth, S. Etemad and G. Baker, “Identification and Role of Two Photon Absorption in the π-Conjugated Polymer Paratoluene-Sulfonate”, Phys. Rev. Lett., 73:597–600, (1994).CrossRefGoogle Scholar
  70. 70.
    J. Swiatkiewicz, P.N. Prasad, F.E. Karasz, M.A. Drury and P. Glatkowski, “Anisotropy of the linear and nonlinear third-order nonlinear optical properties of a stretch-oriented polymer film of poly-2,5-dimethoxy paraphenylvinylene”, Appl. Phys. Lett., 56:892–4 (1990).CrossRefGoogle Scholar
  71. 71.
    Th. Gabler, R. Waldhausl, A. Brauer, F. Michelotti, H.-H. Horhold and U. Bartuch, “Spectral Broadening Measurements in Poly(phenylene vinylene) polymer channel waveguides”, Appl Phys. Lett., 70:928–930 (1997).CrossRefGoogle Scholar
  72. 72.
    B. Lawrence, M. Cha, J.U. Kang, W. Torruellas, G.I. Stegeman, G. Baker, J. Meth and S. Etemad, “Large Purely Refractive Nonlinear Index of Single Crystal P-Toluene Sulfonate (PTS) at 1600 nm”, Electron. Lett., 30:447–8 (1994).CrossRefGoogle Scholar
  73. 73.
    A. Samoc, M. Samoc, M. Woodruff and B. Luther-Davies, “Tuning the properties of poly(p-phenylvinylene) for use in all-optical switching”, Opt. Lett., 20:1241–3 (1995).CrossRefGoogle Scholar
  74. 74.
    P.D. Townsend, J.L. Jackel, G.L. Baker, J.A. Shelbourne III, and S. Etemad, Appl. Phys. Lett., 55:1829 (1989).CrossRefGoogle Scholar
  75. 75.
    K. Sasaki, S. Sasaki and O. Furukawa, Materials Research Society Symposium Proceedings on Electrical Optical and Magnetic Properties of Organic Solid State Materials, Vol. 247, eds. L.Y. Chiang, A.F. Garito and D.J. Sandman, 141-9 (1992).Google Scholar
  76. 76.
    R.A. Norwood, J.R. Sounik, D. Holcomb, J. Popolo, D. Swanson, R. Spitzer and G. Hansen, Opt. Lett., 17:577–9(1992).CrossRefGoogle Scholar
  77. 77.
    N. Akhmediev and A. Ankiewicz, “Solitons: Nonlinear Pulses and Beams”, (Chapman Hall, London, 1997)Google Scholar
  78. 78.
    U. Bartuch, U. Peschel, Th. Gabler, R. Waldhausl, H.H. Horhold, “Experimental investigations and numerical simulations of spatial solitons in planar polymer waveguides”, Opt. Comm. 134, 49(1997).CrossRefGoogle Scholar
  79. 79.
    W. Torruellas, B. Lawrence and G.I. Stegeman, “Self-focusing and Two-Dimensional Spatial Solitons in PTS”, Electr. Lett., 32:2092–4 (1996).CrossRefGoogle Scholar
  80. 80.
    E.M. Wright, B.L. Lawrence, W.E. Torruellas and G.I. Stegeman, “Stable self-trapping and ring formation in PTS”, Opt. Lett., 20:2481–3 (1995).CrossRefGoogle Scholar
  81. 81.
    B.L. Lawrence, W.E. Torruellas, G.I. Stegeman, E.M. Wright “Stable self-trapping and ring formation in polydiacetylene para-toluene sulfonate”, Proceedings QELS’96, p. 109, Anaheim, CA, June 2–7, 1996.Google Scholar
  82. 82.
    G. A. Swartzlander, Jr., D. R. Anderson, J. J. Regan, H. Yin, and A. E. Kaplan, Phys. Rev. Lett. 66(12):1583(1991).CrossRefGoogle Scholar
  83. 83.
    B. Luther-Davies and Y. Xiaoping, “Waveguides and Y Junctions formed in bulk media by using dark spatial solitons”, Opt. Lett., 17:496–8 (1992).CrossRefGoogle Scholar
  84. 84.
    B. Luther-Davies and X. Yang, Opt. Lett., 17:1755–7 (1992).CrossRefGoogle Scholar
  85. 85.
    R. Flipse and G.I. Stegeman, unpublished.Google Scholar
  86. 86.
    P.V. Mamyshev, C. Bosshard and G.I. Stegeman, “Generation of a periodic array of dark spatial solitons in the regime of effective amplification”, JOSA B, 11:1254–60, (1994).CrossRefGoogle Scholar
  87. 87.
    Ch. Bosshard, P.V. Mamyshev and G.I. Stegeman, “All-optical steering of dark spatial soliton arrays and the beams guided by them”, Opt. Lett., 19:90–2 (1994).CrossRefGoogle Scholar
  88. 88.
    G.P. Agrawal, “Nonlinear Fiber Optics, 2nd edition” (Academic Press, San Diego, 1995)Google Scholar
  89. 89.
    S. Yamakawa, H. Yamashita, T. Kinoshita and K. Sasaki, “Subpicosecond pulse propagation in dye doped polymer slab waveguide”, Digest of the OSA Topical Meeting on Nonlinear Guided Wave Phenomena, paper SuA2, pp 224-6 (Opt. Soc. Am., Washington, 1996).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • George I. Stegeman
    • 1
  • Akira Otomo
    • 1
  • Matthias Jaeger
    • 1
  • Christian Bosshard
    • 1
  • Rien Flipse
    • 1
  • Michael Canva
    • 1
  1. 1.Center for Research and Education in Optics and Lasers (CREOL)University of Central FloridaOrlandoUSA

Personalised recommendations