Skip to main content

Polymers and Organic-Inorganic Hybrids for Second-Order Nonlinear Optics

  • Chapter
Science and Technology of Polymers and Advanced Materials

Abstract

Poled nonlinear optical (NLO) polymers have been the great interest for photonics applications.1,2 Using such materials, electro-optic modulators with a 100 GHz bandwidth have already been realized at the laboratory level,3 and a number of passive and active photonic devices also sucessfully fabricated.4–6 From the beginning stage of the NLO polymeric materials research in the middle of 1980’s, thermal relaxation and low values of NLO coefficients of chromophores in these systems were the major obstacles for practical applications. Since then there have been continuous efforts toward reducing thermal relaxation and increasing NLO activity of the materials. In recent years, in addition to improving these two fundamental factors, research was also extended to enhance optical quality, processibility and chemical stability of NLO materials, which are the properties closely related to those of matrix polymers.7,8

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. R. Marder, J. E. Sohn, and G. D. Stucky, “Materials for Nonlinear Optics. Chemical Perspectives”, American Chemical Society, Washington, 1991.

    Book  Google Scholar 

  2. P. N. Prasad and D. J. Williams, “Introduction to Nonlinear Optical Effects in Molecules and Polymers”, John Wiley, New York, 1991.

    Google Scholar 

  3. L. R. Dalton, Abstracts of 3rd Intermational Conference on Organic Nonlinear Optics, Morco Island, Florida, Dec. 16–20, 1996, p 25.

    Google Scholar 

  4. J. W. Wu, J. F. Valley, S. Ermer, E. S. Binkley, and J. T. Kenny, R. Lytel, Appl. Phys. Lett. 1991. 59. 2213.

    Google Scholar 

  5. D. Yu, A. Gharavi, and K. Yu, Appl. Phys. Lett. 1995, 66, 1050.

    Article  CAS  Google Scholar 

  6. M. Chen, L. R. Dalton, L. Yu, Y. Q. Shi, and W. H. Steier, Macromolecules 1992, 25, 4032.

    Article  CAS  Google Scholar 

  7. K.-S. Lee, M. Samoc, and P. N. Prasad, “Polymers for Photonics Applications”, in Comprehensive Polymer Science, 1st Suppl. Vol., S. L. Aggarwal and S. Russo Eds, Pergamon Press, Oxford, 1992.

    Google Scholar 

  8. D. M. Burland, R. D. Miller, and C. A. Walsh, Chem. Rev. 94, 31 (1994).

    Article  CAS  Google Scholar 

  9. W. M. Laidlaw, R.G. Denning, T. Verbiest, E. Chauchard, and A. Persoons, Nature 363, 58 (1993).

    Article  CAS  Google Scholar 

  10. G. J. Ashwell, R. C. Hargreaves, C. E. Baldwin, G. S. Bahra, and C. R. Baown, Nature 357, 363 (1992).

    Article  Google Scholar 

  11. Y. W. Kim, K.-S. Lee, and K.-Y. Choi, Syn. Met. 57, 3998 (1993).

    Article  Google Scholar 

  12. K.-J. Moon, H.-K. Shim, and K.-S. Lee, Mol. Cryst. & Liq. Cryst., 247, 91 (1994).

    Article  CAS  Google Scholar 

  13. K.-J. Moon, H.-K. Shim, K.-S. Lee, J. Zieba, and P. N. Prasad, Macromolecules, 29, 861 (1996).

    Article  CAS  Google Scholar 

  14. H. Y. Woo, K.-S. Lee, and H.-K. Shim, Macromol. Chem. Phys., submitted 1997.

    Google Scholar 

  15. S. B. Lee, K. B. Lee, and K.-S. Lee,’ 96 Fall Meeting of the Polymer Society of Korea, Abstracts, 1996, 704.

    Google Scholar 

  16. C.-K. Park, J. Zieba, C.-F. Zhao, B. Swedek, W. M. K. P. Wijekoon, and P. N. Prasad, Macromolecules, 28, 3713 (1995).

    Article  CAS  Google Scholar 

  17. K.-S. Lee, K.-J. Moon, and K.-S. Lee, Korea Polym. J., 4, 191 (1996).

    CAS  Google Scholar 

  18. K.-S. Lee, S.-W. Choi, H. Y. Woo, K.-J. Moon, H.-K. Shim, M. Jeong, and T.-K. Lim, J. Opt. Soc. Am. B, submitted 1997.

    Google Scholar 

  19. T. Takekoshi, J. E. Kochanowski, J. S. Manello, and M. J. Webber, J. Polym. Sci. Polym. Symp., 74, 93 (1986).

    Article  CAS  Google Scholar 

  20. K.-S. Lee, K.-Y. Choi, J. C. Won, B. K. Park, and I.-T. Lee, US Patent 5,212,277, May 18, 1993.

    Google Scholar 

  21. A. K. Jen, V. P. Rao, K. Y. Wong, and K. J. Drost, J. Chem. Soc, Chem. Commun. 1993, 90.

    Google Scholar 

  22. O. Mitsunobu, Synthesis, 1981, 1.

    Google Scholar 

  23. J. Zieba, Y. Zhang, M. Cassteans, R. Burzynski, and P. N. Prasad, Proc. SPIE-Int. Soc. Opt. Eng., 1992, 1758.

    Google Scholar 

  24. K.-S. Lee, K.-J. Moon, H. Y. Woo, and H.-K. Shim, Adv. Mater., in press 1997.

    Google Scholar 

  25. M. Chen, L. Yu, L. R. Dalton, Y. Shi, and W. H. Steier, Macromolecules, 24, 5421 (1991).

    Article  CAS  Google Scholar 

  26. Y. H. Min, K.-S. Lee, C. S. Yoon, K.-S. Kim, K.-J. Moon, and H.-K. Shim, Polymer (Korea), 19, 569 (1995).

    CAS  Google Scholar 

  27. Y. H. Min, K.-S. Lee, C. S. Yoon, K.-S. Kim, K.-J. Moon, and H.-K. Shim, Nonlinear Opt., 15, 175 (1996).

    CAS  Google Scholar 

  28. K.-S. Lee, Y. H. Min, S. H. Na, J. H. Lee, K.-S. Kim, and C. S. Yoon, Polym. Mater. Sci. & Eng., 75, 261 (1996).

    CAS  Google Scholar 

  29. K.-S. Lee, Y. H. Min, C. S. Yoon, and L. M. Do, Mol Elect. & Dev., 7, 267 (1996).

    Google Scholar 

  30. I. H. Suh, S. S. Lim, J.H. Lee, M. J. Kim, C. S. Yoon, H. K. Hong, and K.-S. Lee, Acta Cryst., C50, 1768(1994).

    CAS  Google Scholar 

  31. Y. H. Min, C. S. Yoon, K.-S. Lee, and K. S. Kim, Appl Physics (Korea), 9, 176 (1996).

    CAS  Google Scholar 

  32. C. C. Teng and H. T. Man, Appl. Phys. Lett., 56, 30 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lee, KS. et al. (1998). Polymers and Organic-Inorganic Hybrids for Second-Order Nonlinear Optics. In: Prasad, P.N., Mark, J.E., Kandil, S.H., Kafafi, Z.H. (eds) Science and Technology of Polymers and Advanced Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0112-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0112-5_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0114-9

  • Online ISBN: 978-1-4899-0112-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics