Polymers and Organic-Inorganic Hybrids for Second-Order Nonlinear Optics

  • Kwang-Sup Lee
  • Sung-Bae Lee
  • Kyung-Bok Lee
  • Hong-Ku Shim
  • Ki-Jeong Moon
  • Han Young Woo
  • Choon Sup Yoon
  • Yoo Hong Min


Poled nonlinear optical (NLO) polymers have been the great interest for photonics applications.1,2 Using such materials, electro-optic modulators with a 100 GHz bandwidth have already been realized at the laboratory level,3 and a number of passive and active photonic devices also sucessfully fabricated.4–6 From the beginning stage of the NLO polymeric materials research in the middle of 1980’s, thermal relaxation and low values of NLO coefficients of chromophores in these systems were the major obstacles for practical applications. Since then there have been continuous efforts toward reducing thermal relaxation and increasing NLO activity of the materials. In recent years, in addition to improving these two fundamental factors, research was also extended to enhance optical quality, processibility and chemical stability of NLO materials, which are the properties closely related to those of matrix polymers.7,8


Composite Film Second Harmonic Generation Second Harmonic Generation Signal Good Optical Quality Mitsunobu Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    S. R. Marder, J. E. Sohn, and G. D. Stucky, “Materials for Nonlinear Optics. Chemical Perspectives”, American Chemical Society, Washington, 1991.CrossRefGoogle Scholar
  2. (2).
    P. N. Prasad and D. J. Williams, “Introduction to Nonlinear Optical Effects in Molecules and Polymers”, John Wiley, New York, 1991.Google Scholar
  3. (3).
    L. R. Dalton, Abstracts of 3rd Intermational Conference on Organic Nonlinear Optics, Morco Island, Florida, Dec. 16–20, 1996, p 25.Google Scholar
  4. (4).
    J. W. Wu, J. F. Valley, S. Ermer, E. S. Binkley, and J. T. Kenny, R. Lytel, Appl. Phys. Lett. 1991. 59. 2213.Google Scholar
  5. (5).
    D. Yu, A. Gharavi, and K. Yu, Appl. Phys. Lett. 1995, 66, 1050.CrossRefGoogle Scholar
  6. (6).
    M. Chen, L. R. Dalton, L. Yu, Y. Q. Shi, and W. H. Steier, Macromolecules 1992, 25, 4032.CrossRefGoogle Scholar
  7. (7).
    K.-S. Lee, M. Samoc, and P. N. Prasad, “Polymers for Photonics Applications”, in Comprehensive Polymer Science, 1st Suppl. Vol., S. L. Aggarwal and S. Russo Eds, Pergamon Press, Oxford, 1992.Google Scholar
  8. (8).
    D. M. Burland, R. D. Miller, and C. A. Walsh, Chem. Rev. 94, 31 (1994).CrossRefGoogle Scholar
  9. (9).
    W. M. Laidlaw, R.G. Denning, T. Verbiest, E. Chauchard, and A. Persoons, Nature 363, 58 (1993).CrossRefGoogle Scholar
  10. (10).
    G. J. Ashwell, R. C. Hargreaves, C. E. Baldwin, G. S. Bahra, and C. R. Baown, Nature 357, 363 (1992).CrossRefGoogle Scholar
  11. (11).
    Y. W. Kim, K.-S. Lee, and K.-Y. Choi, Syn. Met. 57, 3998 (1993).CrossRefGoogle Scholar
  12. (12).
    K.-J. Moon, H.-K. Shim, and K.-S. Lee, Mol. Cryst. & Liq. Cryst., 247, 91 (1994).CrossRefGoogle Scholar
  13. (13).
    K.-J. Moon, H.-K. Shim, K.-S. Lee, J. Zieba, and P. N. Prasad, Macromolecules, 29, 861 (1996).CrossRefGoogle Scholar
  14. (14).
    H. Y. Woo, K.-S. Lee, and H.-K. Shim, Macromol. Chem. Phys., submitted 1997.Google Scholar
  15. (15).
    S. B. Lee, K. B. Lee, and K.-S. Lee,’ 96 Fall Meeting of the Polymer Society of Korea, Abstracts, 1996, 704.Google Scholar
  16. (16).
    C.-K. Park, J. Zieba, C.-F. Zhao, B. Swedek, W. M. K. P. Wijekoon, and P. N. Prasad, Macromolecules, 28, 3713 (1995).CrossRefGoogle Scholar
  17. (17).
    K.-S. Lee, K.-J. Moon, and K.-S. Lee, Korea Polym. J., 4, 191 (1996).Google Scholar
  18. (18).
    K.-S. Lee, S.-W. Choi, H. Y. Woo, K.-J. Moon, H.-K. Shim, M. Jeong, and T.-K. Lim, J. Opt. Soc. Am. B, submitted 1997.Google Scholar
  19. (19).
    T. Takekoshi, J. E. Kochanowski, J. S. Manello, and M. J. Webber, J. Polym. Sci. Polym. Symp., 74, 93 (1986).CrossRefGoogle Scholar
  20. (20).
    K.-S. Lee, K.-Y. Choi, J. C. Won, B. K. Park, and I.-T. Lee, US Patent 5,212,277, May 18, 1993.Google Scholar
  21. (21).
    A. K. Jen, V. P. Rao, K. Y. Wong, and K. J. Drost, J. Chem. Soc, Chem. Commun. 1993, 90.Google Scholar
  22. (22).
    O. Mitsunobu, Synthesis, 1981, 1.Google Scholar
  23. (23).
    J. Zieba, Y. Zhang, M. Cassteans, R. Burzynski, and P. N. Prasad, Proc. SPIE-Int. Soc. Opt. Eng., 1992, 1758.Google Scholar
  24. (24).
    K.-S. Lee, K.-J. Moon, H. Y. Woo, and H.-K. Shim, Adv. Mater., in press 1997.Google Scholar
  25. (25).
    M. Chen, L. Yu, L. R. Dalton, Y. Shi, and W. H. Steier, Macromolecules, 24, 5421 (1991).CrossRefGoogle Scholar
  26. (26).
    Y. H. Min, K.-S. Lee, C. S. Yoon, K.-S. Kim, K.-J. Moon, and H.-K. Shim, Polymer (Korea), 19, 569 (1995).Google Scholar
  27. (27).
    Y. H. Min, K.-S. Lee, C. S. Yoon, K.-S. Kim, K.-J. Moon, and H.-K. Shim, Nonlinear Opt., 15, 175 (1996).Google Scholar
  28. (28).
    K.-S. Lee, Y. H. Min, S. H. Na, J. H. Lee, K.-S. Kim, and C. S. Yoon, Polym. Mater. Sci. & Eng., 75, 261 (1996).Google Scholar
  29. (29).
    K.-S. Lee, Y. H. Min, C. S. Yoon, and L. M. Do, Mol Elect. & Dev., 7, 267 (1996).Google Scholar
  30. (30).
    I. H. Suh, S. S. Lim, J.H. Lee, M. J. Kim, C. S. Yoon, H. K. Hong, and K.-S. Lee, Acta Cryst., C50, 1768(1994).Google Scholar
  31. (31).
    Y. H. Min, C. S. Yoon, K.-S. Lee, and K. S. Kim, Appl Physics (Korea), 9, 176 (1996).Google Scholar
  32. (32).
    C. C. Teng and H. T. Man, Appl. Phys. Lett., 56, 30 (1990).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Kwang-Sup Lee
    • 1
  • Sung-Bae Lee
    • 1
  • Kyung-Bok Lee
    • 1
  • Hong-Ku Shim
    • 2
  • Ki-Jeong Moon
    • 2
  • Han Young Woo
    • 2
  • Choon Sup Yoon
    • 3
  • Yoo Hong Min
  1. 1.Department of Macromolecular ScienceHannam UniversityTaejonKorea
  2. 2.Department of ChemistryKAISTTaejonKorea
  3. 3.Department of PhysicsKAISTTaejonKorea

Personalised recommendations