High-Speed Photonics Polymer-Transmission and Display

  • Takaaki Ishigure
  • Akihiro Horibe
  • Eisuke Nihei
  • Yasuhiro Koike


Recent developments in the personal computer technologies have greatly expanded the range of the broadband network applications. Some applications are greatly demanding high-speed data transmission in the order of mega bit per second (Mb/s) even in the premise network. We believe that the technologies required in the future broadband network can falls into following three categories: information “conversion” to digital signal, high speed “transmission” of information and its “display.”


Absorption Loss Refractive Index Profile Modal Noise Plastic Optical Fiber Light Pipe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Koike, T. Ishigure, and E. Nihei, High-bandwidth graded-index polymer optical fiber,” IEEEJ. Lightwave Technol. 13: 1475 (1995).CrossRefGoogle Scholar
  2. 2.
    T. Ishigure, E. Nihei, S. Yamazaki, K. Kobayashi, and Y. Koike, “2.5 Gb/s 100 m data transmission using graded index polymer optical fibre and high speed laser diode at 650-nm wavelength,” Electron. Lett. 31: 467 (1995)CrossRefGoogle Scholar
  3. 3.
    Y. Koike, Progress of Plastic Optical Fiber Technology, Proceeding of ECOC’96. vol.1: 41 (1996)Google Scholar
  4. 4.
    A. Horibe, M. Izuhara, E. Nihei, Y Koike, Brighter backlights using highly scattered optical-transmission polymer, J of SID. 3/4: 169 (1995).Google Scholar
  5. 5.
    A. Horibe, E. Nihei, Y Koike, Bright LCD backlight using high-scattering opticaltransmission polymer, SID 96 Digest: 577 (1996).Google Scholar
  6. 6.
    T. Kaino, M. Fujiki, and K. Jinguji, Preparation of plastic optical fibers, Rev. Electron. Commun. Lab. 32:478 (1984).Google Scholar
  7. 7.
    Y Koike, S. Matsuoka, H. E. Bair, Origin of excess light scattering in poly(methyl methacrylate) glasses, Macromolecules. 25: 4809 (1992).CrossRefGoogle Scholar
  8. 8.
    Y Koike, High bandwidth, low loss polymer fibers, Proceeding of ECOC’92. Vol.2: 679 (1992).Google Scholar
  9. 9.
    T. Ishigure, E. Nihei, Y Koike, C. E. Forbes, L. LaNieve, R. Straff, H. A. Deckers, high-bandwidth graded-index polymer optical fiber for near infrared use, IEEE Photon. Technol. Lett. 7:403(1995).CrossRefGoogle Scholar
  10. 10.
    W. Groh, Overtone absorption in macromolecules for polymer optical fibers, Makromol. Chem. 189: 2861 (1988).CrossRefGoogle Scholar
  11. 11.
    J. W. Fleming, Material and mode dispersion in GeO2 * B2O3 · SiO2 glasses, J. Am. Cer. Soc. 59: 503 (1976).CrossRefGoogle Scholar
  12. 12.
    R. Olshansky and D. B. Keck, Pulse broadening in graded-index optical fibers, Appl. Opt. 15:483(1976).CrossRefGoogle Scholar
  13. 13.
    R. E. Epworth, The phenomenon of modal noise in analogue and digital fiber systems, Proceeding of ECOC’78, 492 (1978).Google Scholar
  14. 14.
    A. M. J. Koonen, Bit-Error-Rate degradation in a multimode fiber optic transmission link due to modal noise, IEEE J. Sci. Ar. Com. 4: 1515 (1986).CrossRefGoogle Scholar
  15. 15.
    I. Lux, L. Koblinger, Monte Carlo particle transport methods: Neutron and photon calculations, CRC Press, New York (1991).Google Scholar
  16. 16.
    G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Ann. der phys. 25:377(1908).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Takaaki Ishigure
    • 2
  • Akihiro Horibe
    • 1
  • Eisuke Nihei
    • 1
  • Yasuhiro Koike
    • 1
    • 2
  1. 1.Faculty of Science and TechnologyKeio UniversityKohoku-ku, Yokohama 223Japan
  2. 2.Kanagawa Academy of Science and TechnologyKanazawa-ku, Yokohama 236Japan

Personalised recommendations